These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3111558)

  • 1. Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1.
    MacKerell AD; Rigler R; Nilsson L; Hahn U; Saenger W
    Biophys Chem; 1987 May; 26(2-3):247-61. PubMed ID: 3111558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex.
    MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W
    Proteins; 1989; 6(1):20-31. PubMed ID: 2558378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence.
    Axelsen PH; Prendergast FG
    Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of ribonuclease T1: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme.
    MacKerell AD; Nilsson L; Rigler R; Saenger W
    Biochemistry; 1988 Jun; 27(12):4547-56. PubMed ID: 3139027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H-NMR investigation of the interaction between RNase T1 and a novel substrate analog, 2'-deoxy-2'-fluoroguanylyl-(3'-5')uridine.
    Shibata Y; Shimada I; Ikehara M; Miyazawa T; Inagaki F
    FEBS Lett; 1988 Aug; 235(1-2):237-40. PubMed ID: 2841155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1.
    Eftink MR; Ghiron CA
    Biophys J; 1987 Sep; 52(3):467-73. PubMed ID: 3115328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of tryptophan in ribonuclease-T1. I. Simulation strategies and fluorescence anisotropy decay.
    Axelsen PH; Haydock C; Prendergast FG
    Biophys J; 1988 Aug; 54(2):249-58. PubMed ID: 3145038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds.
    Pace CN; Grimsley GR; Thomson JA; Barnett BJ
    J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1.
    James DR; Demmer DR; Steer RP; Verrall RE
    Biochemistry; 1985 Sep; 24(20):5517-26. PubMed ID: 3935161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A.
    Nishikawa S; Morioka H; Kim HJ; Fuchimura K; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochemistry; 1987 Dec; 26(26):8620-4. PubMed ID: 3126807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of the ribonuclease T1 2'-GMP complex at 1.9-A resolution.
    Arni R; Heinemann U; Tokuoka R; Saenger W
    J Biol Chem; 1988 Oct; 263(30):15358-68. PubMed ID: 2844811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.
    Chen LX; Longworth JW; Fleming GR
    Biophys J; 1987 Jun; 51(6):865-73. PubMed ID: 3038204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of the ribonuclease T1 X 3'-guanylic acid complex at 2.6 A resolution.
    Sugio S; Oka K; Ohishi H; Tomita K; Saenger W
    FEBS Lett; 1985 Apr; 183(1):115-8. PubMed ID: 2984048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.
    Eftink MR; Hagaman KA
    Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the backbone mobility of ribonuclease T1 and its 2'GMP complex using molecular dynamics simulations and NMR relaxation data.
    Fushman D; Ohlenschläger O; Rüterjans H
    J Biomol Struct Dyn; 1994 Jun; 11(6):1377-402. PubMed ID: 7946080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding.
    Kostrewa D; Choe HW; Heinemann U; Saenger W
    Biochemistry; 1989 Sep; 28(19):7592-600. PubMed ID: 2514790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the contribution of Glu46 and Asn98 to the guanosine specificity of ribonuclease T1.
    Steyaert J; Opsomer C; Wyns L; Stanssens P
    Biochemistry; 1991 Jan; 30(2):494-9. PubMed ID: 1899029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of ribonuclease T1. Effect of solvent on the interaction with 2'GMP.
    MacKerell AD; Rigler R; Nilsson L; Heinemann U; Saenger W
    Eur Biophys J; 1988; 16(5):287-97. PubMed ID: 2853669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1.
    Pace CN; Laurents DV; Thomson JA
    Biochemistry; 1990 Mar; 29(10):2564-72. PubMed ID: 2110472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.