These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis. MacKerell AD; Sommer MS; Karplus M J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
27. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions. Elofsson A; Kulinski T; Rigler R; Nilsson L Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564 [TBL] [Abstract][Full Text] [Related]
29. On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins. Ababou A; Bombarda E Protein Sci; 2001 Oct; 10(10):2102-13. PubMed ID: 11567101 [TBL] [Abstract][Full Text] [Related]
31. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism. Somogyi B; Norman JA; Punyiczki M; Rosenberg A Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639 [TBL] [Abstract][Full Text] [Related]
32. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45. Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293 [TBL] [Abstract][Full Text] [Related]
33. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I. Watanabe H; Ando E; Ohgi K; Irie M J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847 [TBL] [Abstract][Full Text] [Related]
34. Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base. Nishikawa S; Kimura T; Morioka H; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Biochem Biophys Res Commun; 1988 Jan; 150(1):68-74. PubMed ID: 3122758 [TBL] [Abstract][Full Text] [Related]
35. Tryptophan conformations associated with partial unfolding in ribonuclease T1. Moors SL; Jonckheer A; De Maeyer M; Engelborghs Y; Ceulemans A Biophys J; 2009 Sep; 97(6):1778-86. PubMed ID: 19751684 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Steyaert J; Haikal AF; Wyns L Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724 [TBL] [Abstract][Full Text] [Related]
37. Stability of ribonuclease T2 from Aspergillus oryzae. Kawata Y; Hamaguchi K Protein Sci; 1995 Mar; 4(3):416-20. PubMed ID: 7795525 [TBL] [Abstract][Full Text] [Related]
38. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020 [TBL] [Abstract][Full Text] [Related]
39. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]