These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 31115714)

  • 1. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring causal genomic alterations in breast cancer using gene expression data.
    Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J
    BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction-Based Feature Selection for Uncovering Cancer Driver Genes Through Copy Number-Driven Expression Level.
    Park H; Niida A; Imoto S; Miyano S
    J Comput Biol; 2017 Feb; 24(2):138-152. PubMed ID: 27759426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
    Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM
    Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.
    Baur B; Bozdag S
    Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Integrated Analyses of Driver Genes Identify Key Biomarkers in Thyroid Cancer.
    Xu Q; Song A; Xie Q
    Technol Cancer Res Treat; 2020; 19():1533033820940440. PubMed ID: 32812852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined analysis of gene expression, DNA copy number, and mutation profiling data to display biological process anomalies in individual breast cancers.
    Shi W; Balazs B; Györffy B; Jiang T; Symmans WF; Hatzis C; Pusztai L
    Breast Cancer Res Treat; 2014 Apr; 144(3):561-8. PubMed ID: 24619174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.