BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31115719)

  • 1. Improving the Osteogenicity of PCL Fiber Substrates by Surface-Immobilization of Bone Morphogenic Protein-2.
    Gadalla D; Goldstein AS
    Ann Biomed Eng; 2020 Mar; 48(3):1006-1015. PubMed ID: 31115719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis induction of periodontal ligament cells onto bone morphogenic protein-2 immobilized PCL fibers.
    Kim SE; Yun YP; Han YK; Lee DW; Ohe JY; Lee BS; Song HR; Park K; Choi BJ
    Carbohydr Polym; 2014 Jan; 99():700-9. PubMed ID: 24274561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells.
    Zhang H; Migneco F; Lin CY; Hollister SJ
    Tissue Eng Part A; 2010 Nov; 16(11):3441-8. PubMed ID: 20560772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.
    Park J; Lee SJ; Jung TG; Lee JH; Kim WD; Lee JY; Park SA
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111528. PubMed ID: 33385823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds.
    Kim TH; Yun YP; Park YE; Lee SH; Yong W; Kundu J; Jung JW; Shim JH; Cho DW; Kim SE; Song HR
    Biomed Mater; 2014 Apr; 9(2):025008. PubMed ID: 24518200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.
    Cao L; Yu Y; Wang J; Werkmeister JA; McLean KM; Liu C
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():298-306. PubMed ID: 28254298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-3-3ε protein-immobilized PCL-HA electrospun scaffolds with enhanced osteogenicity.
    Rivero G; Aldana AA; Frontini Lopez YR; Liverani L; Boccacini AR; Bustos DM; Abraham GA
    J Mater Sci Mater Med; 2019 Aug; 30(9):99. PubMed ID: 31455977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a 3D BMP-2-Delivering Tannylated PCL Scaffold and Its Anti-Oxidant, Anti-Inflammatory, and Osteogenic Effects In Vitro.
    Lee JY; Lim H; Ahn JW; Jang D; Lee SH; Park K; Kim SE
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering.
    Cheng Y; Ramos D; Lee P; Liang D; Yu X; Kumbar SG
    J Biomed Nanotechnol; 2014 Feb; 10(2):287-98. PubMed ID: 24738337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and long-term (2-year follow-up) in vivo osteogenic activities of human periosteum-derived osteoblasts seeded into growth factor-releasing polycaprolactone/pluronic F127 beads scaffolds.
    Lee JH; Woo DK; Kim TH; Kang JG; Yun JW; Park JH; Park BW; Kang YH; Rho GJ; Jang SJ; Park JS; Lee HC; Yoon YM; Hwang TS; Kim DR; Hwang SC; Lee DH; Kim HY; Oh SH; Byun JH
    J Biomed Mater Res A; 2017 Feb; 105(2):363-376. PubMed ID: 27643840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
    Shao Z; Zhang X; Pi Y; Wang X; Jia Z; Zhu J; Dai L; Chen W; Yin L; Chen H; Zhou C; Ao Y
    Biomaterials; 2012 Apr; 33(12):3375-87. PubMed ID: 22322196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs).
    Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation.
    Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H
    Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies.
    Chen R; Yu Y; Zhang W; Pan Y; Wang J; Xiao Y; Liu C
    Acta Biomater; 2018 Oct; 80():108-120. PubMed ID: 30218780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering.
    Tang H; Kankala RK; Wang S; Chen A
    Sci China Life Sci; 2019 Dec; 62(12):1670-1682. PubMed ID: 31025172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.