These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31115727)
1. Migration and differentiation of osteoclast precursors under gradient fluid shear stress. Gao Y; Li T; Sun Q; Ye C; Guo M; Chen Z; Chen J; Huo B Biomech Model Mechanobiol; 2019 Dec; 18(6):1731-1744. PubMed ID: 31115727 [TBL] [Abstract][Full Text] [Related]
2. Gradient fluid shear stress regulates migration of osteoclast precursors. Gao Y; Li T; Sun Q; Huo B Cell Adh Migr; 2019 Dec; 13(1):183-191. PubMed ID: 31131719 [TBL] [Abstract][Full Text] [Related]
3. Finite element analysis on mechanical state on the osteoclasts under gradient fluid shear stress. Zhang X; Sun Q; Ye C; Li T; Jiao F; Gao Y; Huo B Biomech Model Mechanobiol; 2022 Aug; 21(4):1067-1078. PubMed ID: 35477827 [TBL] [Abstract][Full Text] [Related]
4. Fluid-Solid Coupling Simulation of Wall Fluid Shear Stress on Cells under Gradient Fluid Flow. Zhang X; Gao Y; Huo B Appl Bionics Biomech; 2021; 2021():8340201. PubMed ID: 34899981 [TBL] [Abstract][Full Text] [Related]
5. Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway. Ma C; Geng B; Zhang X; Li R; Yang X; Xia Y Med Sci Monit; 2020 Jan; 26():e918370. PubMed ID: 31914120 [TBL] [Abstract][Full Text] [Related]
6. Knockdown of TRPV2 inhibits the migration of RAW264.7 cells toward low fluid shear stress region. Gao Y; Zhang X; Huo B J Cell Biochem; 2023 Sep; 124(9):1391-1403. PubMed ID: 37565651 [TBL] [Abstract][Full Text] [Related]
7. Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress. Ye C; Ali S; Sun Q; Guo M; Liu Y; Gao Y; Huo B Comput Biol Med; 2019 Mar; 106():140-148. PubMed ID: 30721821 [TBL] [Abstract][Full Text] [Related]
8. STIM1 and TRPV4 regulate fluid flow-induced calcium oscillation at early and late stages of osteoclast differentiation. Li P; Bian X; Liu C; Wang S; Guo M; Tao Y; Huo B Cell Calcium; 2018 May; 71():45-52. PubMed ID: 29604963 [TBL] [Abstract][Full Text] [Related]
9. Fluid flow-induced calcium response in early or late differentiated osteoclasts. Li P; Hu M; Sun S; Zhang Y; Gao Y; Long M; Huo B; Zhang D Ann Biomed Eng; 2012 Sep; 40(9):1874-83. PubMed ID: 22532320 [TBL] [Abstract][Full Text] [Related]
10. Fluid flow-induced calcium response in osteoclasts: signaling pathways. Li P; Liu C; Hu M; Long M; Zhang D; Huo B Ann Biomed Eng; 2014 Jun; 42(6):1250-60. PubMed ID: 24710796 [TBL] [Abstract][Full Text] [Related]
11. Cell-substrate traction force regulates the fusion of osteoclast precursors through cell-cell interaction. Sun Q; Liu C; Bai X; Huo B Biomech Model Mechanobiol; 2020 Apr; 19(2):481-492. PubMed ID: 31529292 [TBL] [Abstract][Full Text] [Related]
12. High glucose alters the secretome of mechanically stimulated osteocyte-like cells affecting osteoclast precursor recruitment and differentiation. Maycas M; Portolés MT; Matesanz MC; Buendía I; Linares J; Feito MJ; Arcos D; Vallet-Regí M; Plotkin LI; Esbrit P; Gortázar AR J Cell Physiol; 2017 Dec; 232(12):3611-3621. PubMed ID: 28138960 [TBL] [Abstract][Full Text] [Related]
13. Fluid shear stress promotes osteoblast proliferation via the Gαq-ERK5 signaling pathway. Bo Z; Bin G; Jing W; Cuifang W; Liping A; Jinglin M; Jin J; Xiaoyi T; Cong C; Ning D; Yayi X Connect Tissue Res; 2016 Jul; 57(4):299-306. PubMed ID: 27115838 [TBL] [Abstract][Full Text] [Related]
14. Osteoclastogenesis is repressed by mechanical strain in an in vitro model. Rubin J; Fan X; Biskobing DM; Taylor WR; Rubin CT J Orthop Res; 1999 Sep; 17(5):639-45. PubMed ID: 10569471 [TBL] [Abstract][Full Text] [Related]
15. Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic. Zhang S; Feng P; Mo G; Li D; Li Y; Mo L; Yang Z; Liang D Biomed Pharmacother; 2017 Apr; 88():436-442. PubMed ID: 28122309 [TBL] [Abstract][Full Text] [Related]
16. E-cadherin is important for cell differentiation during osteoclastogenesis. Fiorino C; Harrison RE Bone; 2016 May; 86():106-18. PubMed ID: 26959175 [TBL] [Abstract][Full Text] [Related]
17. Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Boudot C; Saidak Z; Boulanouar AK; Petit L; Gouilleux F; Massy Z; Brazier M; Mentaverri R; Kamel S Bone; 2010 May; 46(5):1416-23. PubMed ID: 20149906 [TBL] [Abstract][Full Text] [Related]
18. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. Hayashi S; Yamada T; Tsuneto M; Yamane T; Takahashi M; Shultz LD; Yamazaki H J Immunol; 2003 Nov; 171(10):5130-9. PubMed ID: 14607912 [TBL] [Abstract][Full Text] [Related]
19. Expression and role of mannose receptor/terminal high-mannose type oligosaccharide on osteoclast precursors during osteoclast formation. Morishima S; Morita I; Tokushima T; Kawashima H; Miyasaka M; Omura K; Murota S J Endocrinol; 2003 Feb; 176(2):285-92. PubMed ID: 12553877 [TBL] [Abstract][Full Text] [Related]
20. High shear stress amplitude in combination with prolonged stimulus duration determine induction of osteoclast formation by hematopoietic progenitor cells. Bratengeier C; Liszka A; Hoffman J; Bakker AD; Fahlgren A FASEB J; 2020 Mar; 34(3):3755-3772. PubMed ID: 31957079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]