These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 31116064)

  • 1. Novel Targets for Therapy of Renal Fibrosis.
    Prakoura N; Hadchouel J; Chatziantoniou C
    J Histochem Cytochem; 2019 Sep; 67(9):701-715. PubMed ID: 31116064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periostin in kidney diseases.
    Prakoura N; Chatziantoniou C
    Cell Mol Life Sci; 2017 Dec; 74(23):4315-4320. PubMed ID: 28884334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connexin 43: a New Therapeutic Target Against Chronic Kidney Disease.
    Prakoura N; Kavvadas P; Chadjichristos CE
    Cell Physiol Biochem; 2018; 49(3):985. PubMed ID: 30196298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis.
    Zuo Y; Liu Y
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():38-43. PubMed ID: 30298654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease.
    Murphy-Ullrich JE
    J Histochem Cytochem; 2019 Sep; 67(9):683-699. PubMed ID: 31116066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease.
    Liu F; Wang L; Qi H; Wang J; Wang Y; Jiang W; Xu L; Liu N; Zhuang S
    Clin Sci (Lond); 2017 Aug; 131(16):2125-2143. PubMed ID: 28646122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periostin and Discoidin Domain Receptor 1: New Biomarkers or Targets for Therapy of Renal Disease.
    Prakoura N; Chatziantoniou C
    Front Med (Lausanne); 2017; 4():52. PubMed ID: 28536691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discoidin domain receptor-1 and periostin: new players in chronic kidney disease.
    Alfieri C; Kavvadas P; Simonini P; Ikehata M; Dussaule JC; Chadjichristos CE; Rastaldi MP; Messa P; Chatziantoniou C
    Nephrol Dial Transplant; 2015 Dec; 30(12):1965-71. PubMed ID: 25829327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The research status and prospect of Periostin in chronic kidney disease.
    Jia YY; Yu Y; Li HJ
    Ren Fail; 2020 Nov; 42(1):1166-1172. PubMed ID: 33241962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice.
    Abed A; Toubas J; Kavvadas P; Authier F; Cathelin D; Alfieri C; Boffa JJ; Dussaule JC; Chatziantoniou C; Chadjichristos CE
    Kidney Int; 2014 Oct; 86(4):768-79. PubMed ID: 24850151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease.
    Kerroch M; Alfieri C; Dorison A; Boffa JJ; Chatziantoniou C; Dussaule JC
    Sci Rep; 2016 Feb; 6():21262. PubMed ID: 26880216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis.
    Yan H; Xu J; Xu Z; Yang B; Luo P; He Q
    Biomed Pharmacother; 2021 Nov; 143():112115. PubMed ID: 34488081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Role of cannabinoid receptors in renal diseases].
    François H; Durrbach A; Beaudreuil S; Charpentier B; Lecru L
    Nephrol Ther; 2016 Apr; 12 Suppl 1():S115-22. PubMed ID: 26968477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Connexin 43 in Renal Disease: Insights from In Vivo Models of Experimental Nephropathy.
    Roger E; Boutin L; Chadjichristos CE
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox.
    Dao M; François H
    Front Endocrinol (Lausanne); 2021; 12():720734. PubMed ID: 34305821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal fibrosis: Recent translational aspects.
    François H; Chatziantoniou C
    Matrix Biol; 2018 Aug; 68-69():318-332. PubMed ID: 29292218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal Fibrosis: Common Enemy of Many Origins.
    Hewitt SM; Schaefer L
    J Histochem Cytochem; 2019 Sep; 67(9):621. PubMed ID: 31451045
    [No Abstract]   [Full Text] [Related]  

  • 19. How does TGF-β mediate tubulointerstitial fibrosis?
    Gewin L; Zent R
    Semin Nephrol; 2012 May; 32(3):228-35. PubMed ID: 22835453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibitory effect of chimeric decoy oligodeoxynucleotide against NF-κB and Sp1 in renal interstitial fibrosis.
    Kim KH; Park JH; Lee WR; Park JS; Kim HC; Park KK
    J Mol Med (Berl); 2013 May; 91(5):573-86. PubMed ID: 23114611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.