BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 31116146)

  • 1. Intrahepatic fluorine-18-fluorodeoxyglucose kinetics measured by least squares nonlinear computer modelling and Gjedde-Patlak-Rutland graphical analysis.
    Keramida G; Gregg S; Peters AM
    Nucl Med Commun; 2019 Jul; 40(7):675-683. PubMed ID: 31116146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue standardized uptake value is a closer surrogate of blood fluorine-18 fluorodeoxyglucose clearance after division by blood standardized uptake value, illustrated in brain and liver.
    Keramida G; Peters AM
    Nucl Med Commun; 2019 May; 40(5):552-554. PubMed ID: 30973842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic
    Ben Bouallègue F; Vauchot F; Mariano-Goulart D
    Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between regional hepatic glucose metabolism and regional distribution of hepatic fat.
    Dunford A; Keramida G; Singh N; Aplin M; Peters AM
    Nucl Med Commun; 2019 Mar; 40(3):212-218. PubMed ID: 30628944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography.
    Hong YT; Fryer TD
    Neuroimage; 2010 May; 51(1):164-72. PubMed ID: 20156574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive quantification of nonhuman primate dynamic
    Chen X; Zhang S; Zhang J; Chen L; Wang R; Zhou Y
    Phys Med Biol; 2021 Mar; 66(6):064005. PubMed ID: 33709956
    [No Abstract]   [Full Text] [Related]  

  • 7. Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours.
    Sadato N; Tsuchida T; Nakaumra S; Waki A; Uematsu H; Takahashi N; Hayashi N; Yonekura Y; Ishii Y
    Eur J Nucl Med; 1998 Jun; 25(6):559-64. PubMed ID: 9618569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.
    Trägårdh M; Møller N; Sørensen M
    J Nucl Med; 2015 Sep; 56(9):1366-71. PubMed ID: 26159590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume-normalized uptake rates with robust transportability from PET dual-time and Patlak analyses.
    Thie JA
    Mol Imaging Biol; 2010 Oct; 12(5):479-87. PubMed ID: 19949982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of
    Liu G; Yu H; Shi D; Hu P; Hu Y; Tan H; Zhang Y; Yin H; Shi H
    Eur J Nucl Med Mol Imaging; 2022 Jul; 49(8):2493-2503. PubMed ID: 34417855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDG PET/CT of the non-malignant liver in an increasingly obese world population.
    Keramida G; Peters AM
    Clin Physiol Funct Imaging; 2020 Sep; 40(5):304-319. PubMed ID: 32529712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual time-point [
    Samimi R; Kamali-Asl A; Ahmadyar Y; van den Hoff J; Geramifar P; Rahmim A
    Phys Med; 2024 May; 121():103336. PubMed ID: 38626637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of fluorine-18-fluorodeoxyglucose uptake in the liver and its correlation with hepatic fat content and BMI.
    Seraj SM; Al-Zaghal A; Zadeh MZ; Jahangiri P; Pournazari K; Raynor WY; Werner TJ; Høilund-Carlsen PF; Alavi A; Hunt SJ
    Nucl Med Commun; 2019 May; 40(5):545-551. PubMed ID: 30807535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies.
    Dai X; Chen Z; Tian J
    Nucl Med Commun; 2011 Jan; 32(1):4-16. PubMed ID: 21166088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling.
    Munk OL; Bass L; Roelsgaard K; Bender D; Hansen SB; Keiding S
    J Nucl Med; 2001 May; 42(5):795-801. PubMed ID: 11337579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of methods to quantitate 18F-FDG uptake with PET during experimental acute lung injury.
    Chen DL; Mintun MA; Schuster DP
    J Nucl Med; 2004 Sep; 45(9):1583-90. PubMed ID: 15347728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs.
    Iozzo P; Jarvisalo MJ; Kiss J; Borra R; Naum GA; Viljanen A; Viljanen T; Gastaldelli A; Buzzigoli E; Guiducci L; Barsotti E; Savunen T; Knuuti J; Haaparanta-Solin M; Ferrannini E; Nuutila P
    Gastroenterology; 2007 Feb; 132(2):531-42. PubMed ID: 17258736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent to which standardized uptake values reflect FDG phosphorylation in the liver and spleen as functions of time after injection of
    Keramida G; Anagnostopoulos CD; Peters AM
    EJNMMI Res; 2017 Dec; 7(1):13. PubMed ID: 28176243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplified quantification of FDG metabolism in tumors using the autoradiographic method is less dependent on the acquisition time than SUV.
    Burger IA; Burger C; Berthold T; Buck A
    Nucl Med Biol; 2011 Aug; 38(6):835-41. PubMed ID: 21843779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.