These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 31116390)

  • 1. deepDR: a network-based deep learning approach to in silico drug repositioning.
    Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F
    Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest.
    Zeng X; Zhu S; Hou Y; Zhang P; Li L; Li J; Huang LF; Lewis SJ; Nussinov R; Cheng F
    Bioinformatics; 2020 May; 36(9):2805-2812. PubMed ID: 31971579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer's Disease.
    Chyr J; Gong H; Zhou X
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepR2cov: deep representation learning on heterogeneous drug networks to discover anti-inflammatory agents for COVID-19.
    Wang X; Xin B; Tan W; Xu Z; Li K; Li F; Zhong W; Peng S
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.
    Wan F; Hong L; Xiao A; Jiang T; Zeng J
    Bioinformatics; 2019 Jan; 35(1):104-111. PubMed ID: 30561548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing.
    Wang Z; Zhou M; Arnold C
    Bioinformatics; 2020 Jul; 36(Suppl_1):i525-i533. PubMed ID: 32657387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network.
    Cui C; Ding X; Wang D; Chen L; Xiao F; Xu T; Zheng M; Luo X; Jiang H; Chen K
    Bioinformatics; 2021 Sep; 37(18):2930-2937. PubMed ID: 33739367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The assessment of efficient representation of drug features using deep learning for drug repositioning.
    Moridi M; Ghadirinia M; Sharifi-Zarchi A; Zare-Mirakabad F
    BMC Bioinformatics; 2019 Nov; 20(1):577. PubMed ID: 31726977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DR2DI: a powerful computational tool for predicting novel drug-disease associations.
    Lu L; Yu H
    J Comput Aided Mol Des; 2018 May; 32(5):633-642. PubMed ID: 29687309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
    Firoozbakht F; Rezaeian I; Rueda L; Ngom A
    BMC Bioinformatics; 2022 Apr; 23(1):143. PubMed ID: 35443626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity.
    Lei S; Lei X; Chen M; Pan Y
    Interdiscip Sci; 2024 Mar; 16(1):160-175. PubMed ID: 38103130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug repositioning with adaptive graph convolutional networks.
    Sun X; Jia X; Lu Z; Tang J; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38070161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.