These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 31116390)
21. gene2drug: a computational tool for pathway-based rational drug repositioning. Napolitano F; Carrella D; Mandriani B; Pisonero-Vaquero S; Sirci F; Medina DL; Brunetti-Pierri N; di Bernardo D Bioinformatics; 2018 May; 34(9):1498-1505. PubMed ID: 29236977 [TBL] [Abstract][Full Text] [Related]
22. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening. Wan F; Zhu Y; Hu H; Dai A; Cai X; Chen L; Gong H; Xia T; Yang D; Wang MW; Zeng J Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):478-495. PubMed ID: 32035227 [TBL] [Abstract][Full Text] [Related]
23. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. Liu H; Song Y; Guan J; Luo L; Zhuang Z BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639 [TBL] [Abstract][Full Text] [Related]
24. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model. Le DH; Nguyen-Ngoc D Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660 [TBL] [Abstract][Full Text] [Related]
25. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning. Muslu O; Hoyt CT; Lacerda M; Hofmann-Apitius M; Frohlich H IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):491-500. PubMed ID: 32750869 [TBL] [Abstract][Full Text] [Related]
26. GraphDTA: predicting drug-target binding affinity with graph neural networks. Nguyen T; Le H; Quinn TP; Nguyen T; Le TD; Venkatesh S Bioinformatics; 2021 May; 37(8):1140-1147. PubMed ID: 33119053 [TBL] [Abstract][Full Text] [Related]
27. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636 [TBL] [Abstract][Full Text] [Related]
28. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. Zhao K; So HC Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445 [TBL] [Abstract][Full Text] [Related]
29. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Wang Y; Yang Y; Chen S; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890 [TBL] [Abstract][Full Text] [Related]
30. Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257 [TBL] [Abstract][Full Text] [Related]
31. KG-Predict: A knowledge graph computational framework for drug repurposing. Gao Z; Ding P; Xu R J Biomed Inform; 2022 Aug; 132():104133. PubMed ID: 35840060 [TBL] [Abstract][Full Text] [Related]
32. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034 [TBL] [Abstract][Full Text] [Related]
33. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Gu Y; Zheng S; Yin Q; Jiang R; Li J Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762 [TBL] [Abstract][Full Text] [Related]
34. Heterogeneous graph inference with matrix completion for computational drug repositioning. Yang M; Huang L; Xu Y; Lu C; Wang J Bioinformatics; 2021 Apr; 36(22-23):5456-5464. PubMed ID: 33331887 [TBL] [Abstract][Full Text] [Related]
35. Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis. Peng Y; Yuan M; Xin J; Liu X; Wang J Bioinformatics; 2020 Nov; 36(17):4626-4632. PubMed ID: 32516365 [TBL] [Abstract][Full Text] [Related]
36. Genome-scale enzymatic reaction prediction by variational graph autoencoders. Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q bioRxiv; 2023 Mar; ():. PubMed ID: 36945484 [TBL] [Abstract][Full Text] [Related]
37. Drug Repositioning for Schizophrenia and Depression/Anxiety Disorders: A Machine Learning Approach Leveraging Expression Data. Zhao K; So HC IEEE J Biomed Health Inform; 2019 May; 23(3):1304-1315. PubMed ID: 30010603 [TBL] [Abstract][Full Text] [Related]
38. MULGA, a unified multi-view graph autoencoder-based approach for identifying drug-protein interaction and drug repositioning. Ma J; Li C; Zhang Y; Wang Z; Li S; Guo Y; Zhang L; Liu H; Gao X; Song J Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37610353 [TBL] [Abstract][Full Text] [Related]
39. BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions. Wang X; Yang Y; Li K; Li W; Li F; Peng S Bioinformatics; 2021 Dec; 37(24):4793-4800. PubMed ID: 34329382 [TBL] [Abstract][Full Text] [Related]
40. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Zhao BW; Su XR; Hu PW; Ma YP; Zhou X; Hu L Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36125202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]