These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31116499)
1. Time-of-flight secondary ion mass spectrometry three-dimensional imaging of surface modifications in poly(caprolactone) scaffold pores. Taylor MJ; Graham DJ; Gamble LJ J Biomed Mater Res A; 2019 Oct; 107(10):2195-2204. PubMed ID: 31116499 [TBL] [Abstract][Full Text] [Related]
2. Time of flight secondary ion mass spectrometry-A method to evaluate plasma-modified three-dimensional scaffold chemistry. Taylor MJ; Aitchison H; Hawker MJ; Mann MN; Fisher ER; Graham DJ; Gamble LJ Biointerphases; 2018 Mar; 13(3):03B415. PubMed ID: 29602281 [TBL] [Abstract][Full Text] [Related]
3. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition. Hawker MJ; Pegalajar-Jurado A; Fisher ER Langmuir; 2014 Oct; 30(41):12328-36. PubMed ID: 25247481 [TBL] [Abstract][Full Text] [Related]
4. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related]
5. Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry. Wang D; Poologasundarampillai G; van den Bergh W; Chater RJ; Kasuga T; Jones JR; McPhail DS Biomed Mater; 2014 Feb; 9(1):015013. PubMed ID: 24457328 [TBL] [Abstract][Full Text] [Related]
6. Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. Adala I; Ramis J; Ntone Moussinga C; Janowski I; Amer MH; Bennett AJ; Alexander C; Rose FRAJ J Mater Chem B; 2021 May; 9(20):4120-4133. PubMed ID: 33982048 [TBL] [Abstract][Full Text] [Related]
7. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Rafiei M; Jooybar E; Abdekhodaie MJ; Alvi M Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110913. PubMed ID: 32487419 [TBL] [Abstract][Full Text] [Related]
9. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
10. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior. Turner PR; Yoshida M; Ali MA; Cabral JD Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739 [No Abstract] [Full Text] [Related]
11. A surface-modified poly(ɛ-caprolactone) scaffold comprising variable nanosized surface-roughness using a plasma treatment. Jeon H; Lee H; Kim G Tissue Eng Part C Methods; 2014 Dec; 20(12):951-63. PubMed ID: 24635019 [TBL] [Abstract][Full Text] [Related]
12. Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation. Ju YM; Park K; Son JS; Kim JJ; Rhie JW; Han DK J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):252-60. PubMed ID: 17973245 [TBL] [Abstract][Full Text] [Related]
13. BSA adsorption on titanium: ToF-SIMS investigation of the surface coverage as a function of protein concentration and pH-value. Wilhelmi M; Müller C; Ziegler C; Kopnarski M Anal Bioanal Chem; 2011 May; 400(3):697-701. PubMed ID: 21400076 [TBL] [Abstract][Full Text] [Related]
14. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
15. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
16. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. Zhao Y; Tan K; Zhou Y; Ye Z; Tan WS Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():193-202. PubMed ID: 26652364 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
18. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. Sempertegui ND; Narkhede AA; Thomas V; Rao SS J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215 [TBL] [Abstract][Full Text] [Related]
19. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related]
20. A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent. Yoon H; Kim GH; Koh YH J Biomater Sci Polym Ed; 2010; 21(2):159-70. PubMed ID: 20092682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]