These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31116695)

  • 1. Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane.
    Faturechi R; Hashemi A; Abolfathi N; Solouk A; Seifalian A
    Vascular; 2019 Dec; 27(6):636-647. PubMed ID: 31116695
    [No Abstract]   [Full Text] [Related]  

  • 2. [Assessment of the mechanical properties and biocompatibility of a new electrospun polyurethane vascular prosthesis].
    He W; Hu ZJ; Xu AW; Yin HH; Wang JS; Ye JL; Wang SM
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2006-11. PubMed ID: 22200701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Durability of a Diaphragm for a Total Artificial Heart.
    Gräf F; Rossbroich R; Finocchiaro T; Steinseifer U
    Artif Organs; 2016 Oct; 40(10):1016-1022. PubMed ID: 26713413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications.
    Khodadoust M; Mohebbi-Kalhori D; Jirofti N
    Cardiovasc Eng Technol; 2018 Mar; 9(1):73-83. PubMed ID: 29196952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preparation and performance of a new polyurethane vascular prosthesis.
    He W; Hu Z; Xu A; Liu R; Yin H; Wang J; Wang S
    Cell Biochem Biophys; 2013 Jul; 66(3):855-66. PubMed ID: 23456453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The elastic properties of a polyurethane arterial prosthesis.
    How TV; Clarke RM
    J Biomech; 1984; 17(8):597-608. PubMed ID: 6490672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts.
    Gupta BS; Kasyanov VA
    J Biomed Mater Res; 1997 Mar; 34(3):341-9. PubMed ID: 9086404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the testing protocol on the mechanical characterization of small diameter electrospun vascular grafts.
    Stoiber M; Grasl C; Frieberger K; Moscato F; Bergmeister H; Schima H
    J Mech Behav Biomed Mater; 2020 Apr; 104():103652. PubMed ID: 32174410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic behavior of polyurethane vascular prostheses.
    How TV; Annis D
    J Biomed Mater Res; 1987 Sep; 21(9):1093-108. PubMed ID: 3667636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Compliance of small diameter polyurethane artificial vascular graft ].
    Pan S; Tao J; Zheng H; Yi W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):517-20. PubMed ID: 16856381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New prostheses for use in bypass grafts with special emphasis on polyurethanes.
    Tiwari A; Salacinski H; Seifalian AM; Hamilton G
    Cardiovasc Surg; 2002 Jun; 10(3):191-7. PubMed ID: 12044423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on application of small-caliber vascular prosthesis produced by polyurethane.
    Miyamoto K; Sugimoto T; Okada M; Maeda S
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):174-81. PubMed ID: 10413764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterisation of polyurethane elastomer for biomedical applications.
    Kanyanta V; Ivankovic A
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):51-62. PubMed ID: 19878902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of preparation conditions for small-diameter artificial polyurethane vascular graft on microstructure and mechanical properties].
    Pan S; Yang S; Yi W; Zheng H; Tao J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jan; 19(1):64-9. PubMed ID: 15704848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards compliant small-diameter vascular grafts: Predictive analytical model and experiments.
    Bouchet M; Gauthier M; Maire M; Ajji A; Lerouge S
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():715-723. PubMed ID: 30948109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryografts implantation in human circulation would ensure a physiological transition in the arterial wall energetics, damping and wave reflection.
    Bia D; Barra JG; Armentano RL; Zócalo Y; Pérez H; Saldías M; Alvarez I; Cabrera Fischer EI
    Physiol Res; 2008; 57(3):351-363. PubMed ID: 17298209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative In vitro evaluation of two different preparations of small diameter polyurethane vascular grafts.
    Hsu Sh; Tseng Hj; Wu Ms
    Artif Organs; 2000 Feb; 24(2):119-28. PubMed ID: 10718765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and performance evaluation of a novel elastic bacterial nanocellulose/polyurethane small caliber artificial blood vessels.
    Li G; Bao L; Hu G; Chen L; Zhou X; Hong FF
    Int J Biol Macromol; 2024 May; 268(Pt 2):131685. PubMed ID: 38641268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Testing of Electrospun Polyurethane Blended with Chitosan Nanoparticles for Vascular Graft Applications.
    Subramaniam R; Mani MP; Jaganathan SK
    Cardiovasc Eng Technol; 2018 Sep; 9(3):503-513. PubMed ID: 29700782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.