BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31117301)

  • 1. Compliance with Good Manufacturing Practice in the Assessment of Immunomodulation Potential of Clinical Grade Multipotent Mesenchymal Stromal Cells Derived from Wharton's Jelly.
    Grau-Vorster M; Rodríguez L; Del Mazo-Barbara A; Mirabel C; Blanco M; Codinach M; Gómez SG; Querol S; García-López J; Vives J
    Cells; 2019 May; 8(5):. PubMed ID: 31117301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparability exercise of critical quality attributes of clinical-grade human mesenchymal stromal cells from the Wharton's jelly: single-use stirred tank bioreactors versus planar culture systems.
    López-Fernández A; Codinach M; Coca MI; Prat-Vidal C; Castaño J; Torrents S; Aran G; Rodríguez L; Querol S; Vives J
    Cytotherapy; 2024 May; 26(5):418-426. PubMed ID: 37715777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.
    Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R
    BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro.
    Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G
    Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly.
    Oliver-Vila I; Coca MI; Grau-Vorster M; Pujals-Fonts N; Caminal M; Casamayor-Genescà A; Ortega I; Reales L; Pla A; Blanco M; García J; Vives J
    Cytotherapy; 2016 Jan; 18(1):25-35. PubMed ID: 26549383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation.
    Devito L; Badraiq H; Galleu A; Taheem DK; Codognotto S; Siow R; Khalaf Y; Briley A; Shennan A; Poston L; McGrath J; Gentleman E; Dazzi F; Ilic D
    Regen Med; 2014; 9(6):723-32. PubMed ID: 25431909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells.
    Chu W; Zhang F; Zeng X; He F; Shang G; Guo T; Wang Q; Wu J; Li T; Zhong ZZ; Liang X; Hu J; Liu M
    Stem Cell Res Ther; 2024 May; 15(1):131. PubMed ID: 38702793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical process parameters for expansion of clinical grade human Wharton's jelly-derived mesenchymal stromal cells in stirred-tank bioreactors.
    López-Fernández A; Garcia-Gragera V; Lecina M; Vives J
    Biotechnol J; 2024 Feb; 19(2):e2300381. PubMed ID: 38403461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells.
    Corotchi MC; Popa MA; Remes A; Sima LE; Gussi I; Lupu Plesu M
    Stem Cell Res Ther; 2013 Jul; 4(4):81. PubMed ID: 23845279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord.
    Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ
    Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of Mesenchymal Stromal Cells from Ovine Umbilical Cord Wharton's Jelly.
    Carreras-Sánchez I; López-Fernández A; Rojas-Márquez R; Vélez R; Aguirre M; Vives J
    Curr Protoc; 2021 Jan; 1(1):e18. PubMed ID: 33484488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors.
    Cañas-Arboleda M; Beltrán K; Medina C; Camacho B; Salguero G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32877987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton's jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy.
    Cardoso TC; Okamura LH; Baptistella JC; Gameiro R; Ferreira HL; Marinho M; Flores EF
    Cell Tissue Res; 2017 Feb; 367(2):243-256. PubMed ID: 27677269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes.
    Zhou C; Yang B; Tian Y; Jiao H; Zheng W; Wang J; Guan F
    Cell Immunol; 2011; 272(1):33-8. PubMed ID: 22004796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual production of human mesenchymal stromal cells and derived extracellular vesicles in a dissolvable microcarrier-based stirred culture system.
    Bandarra-Tavares H; Franchi-Mendes T; Ulpiano C; Morini S; Kaur N; Harris-Becker A; Vemuri MC; Cabral JMS; Fernandes-Platzgummer A; da Silva CL
    Cytotherapy; 2024 Jul; 26(7):749-756. PubMed ID: 38506771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of processing methods to improve success in the derivation of human multipotent mesenchymal stromal cells from cryopreserved umbilical cord tissue fragments.
    Muñoz-Domínguez N; Carreras-Sánchez I; López-Fernández A; Vives J
    Cryobiology; 2022 Oct; 108():34-41. PubMed ID: 36041506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells.
    Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y
    Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.