BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31117372)

  • 1. Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification.
    Chen Y; Zhang Y; Zhuang J; Lee JH; Wang L; Fang RH; Gao W; Zhang L
    ACS Nano; 2019 Jun; 13(6):7209-7215. PubMed ID: 31117372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers.
    Pang Z; Hu CM; Fang RH; Luk BT; Gao W; Wang F; Chuluun E; Angsantikul P; Thamphiwatana S; Lu W; Jiang X; Zhang L
    ACS Nano; 2015 Jun; 9(6):6450-8. PubMed ID: 26053868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Modal Nanoscavenger for Detoxification of Organophosphorus Compounds.
    Zou S; Wang B; Wang Q; Liu G; Song J; Zhang F; Li J; Wang F; He Q; Zhu Y; Zhang L
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42454-42467. PubMed ID: 36089739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of OpdA, an organophosphorus (OP) hydrolase, prevents lethality in an African green monkey model of acute OP poisoning.
    Jackson CJ; Carville A; Ward J; Mansfield K; Ollis DL; Khurana T; Bird SB
    Toxicology; 2014 Mar; 317():1-5. PubMed ID: 24447378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polyhydroxyfullerenes on organophosphate-induced toxicity in mice.
    Ehrich M; Hinckley J; Werre SR; Zhou Z
    Toxicology; 2020 Dec; 445():152586. PubMed ID: 32949634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations in current acetylcholinesterase structure-based design of oxime antidotes for organophosphate poisoning.
    Kovalevsky A; Blumenthal DK; Cheng X; Taylor P; Radić Z
    Ann N Y Acad Sci; 2016 Aug; 1378(1):41-49. PubMed ID: 27371941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides.
    Gorecki L; Korabecny J; Musilek K; Malinak D; Nepovimova E; Dolezal R; Jun D; Soukup O; Kuca K
    Arch Toxicol; 2016 Dec; 90(12):2831-2859. PubMed ID: 27582056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico and in vitro evaluation of two novel oximes (K378 and K727) in comparison to K-27 and pralidoxime against paraoxon-ethyl intoxication.
    Arshad M; Fatmi MQ; Musilek K; Hussain A; Kuca K; Petroianu G; Kalasz H; Nurulain SM
    Toxicol Mech Methods; 2018 Jan; 28(1):62-68. PubMed ID: 28722512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell membrane enveloped polymeric nanosponge for detoxification of chlorpyrifos poison: In vitro and in vivo studies.
    Altaf S; Muhammad F; Aslam B; Faisal MN
    Hum Exp Toxicol; 2021 Aug; 40(8):1286-1295. PubMed ID: 33583223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation of in vitro to in vivo pyridinium oxime potential in tabun poisoning.
    Katalinić M; Maček Hrvat N; Žďárová Karasová J; Misik J; Kovarik Z
    Arh Hig Rada Toksikol; 2015 Dec; 66(4):291-8. PubMed ID: 26751861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006-2016).
    Gorecki L; Korabecny J; Musilek K; Nepovimova E; Malinak D; Kucera T; Dolezal R; Jun D; Soukup O; Kuca K
    Expert Opin Ther Pat; 2017 Sep; 27(9):971-985. PubMed ID: 28569609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system.
    Schmidt HR; Radić Z; Taylor P; Fradinger EA
    Toxicol Appl Pharmacol; 2015 Apr; 284(2):197-203. PubMed ID: 25701203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in biological activities between recombinant human paraoxonase 1 (rhPON1) subtype isozemys R/Q as antidotes against organophosphorus poisonings.
    Cui Y; Zhao M; Han L
    Toxicol Lett; 2020 Jun; 325():51-61. PubMed ID: 31981688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotoxicity in acute and repeated organophosphate exposure.
    Naughton SX; Terry AV
    Toxicology; 2018 Sep; 408():101-112. PubMed ID: 30144465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides.
    Wilhelm CM; Snider TH; Babin MC; Jett DA; Platoff GE; Yeung DT
    Toxicol Appl Pharmacol; 2014 Dec; 281(3):254-65. PubMed ID: 25448441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of pyridinium oximes with acetylcholinesterase and their effect on organophosphate-poisoned mice.
    Kovarik Z; Calić M; Vrdoljak AL; Radić B
    J Mol Neurosci; 2006; 30(1-2):113-4. PubMed ID: 17192653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caramiphen edisylate: an optimal antidote against organophosphate poisoning.
    Raveh L; Eisenkraft A; Weissman BA
    Toxicology; 2014 Nov; 325():115-24. PubMed ID: 25201353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning.
    Izquierdo PG; Charvet CL; Neveu C; Green AC; Tattersall JEH; Holden-Dye L; O'Connor V
    PLoS One; 2023; 18(4):e0284786. PubMed ID: 37083685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors.
    Soukup O; Jun D; Tobin G; Kuca K
    Arch Toxicol; 2013 Apr; 87(4):711-9. PubMed ID: 23179755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical aspects of pharmacological prophylaxis against nerve agent poisoning.
    Bajgar J; Fusek J; Kassa J; Kuca K; Jun D
    Curr Med Chem; 2009; 16(23):2977-86. PubMed ID: 19689278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.