These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 31117382)
1. Laser-Induced Graphene Triboelectric Nanogenerators. Stanford MG; Li JT; Chyan Y; Wang Z; Wang W; Tour JM ACS Nano; 2019 Jun; 13(6):7166-7174. PubMed ID: 31117382 [TBL] [Abstract][Full Text] [Related]
2. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na Cui C; Wang X; Yi Z; Yang B; Wang X; Chen X; Liu J; Yang C ACS Appl Mater Interfaces; 2018 Jan; 10(4):3652-3659. PubMed ID: 29313665 [TBL] [Abstract][Full Text] [Related]
3. Laminated Laser-Induced Graphene Composites. Li JT; Stanford MG; Chen W; Presutti SE; Tour JM ACS Nano; 2020 Jul; 14(7):7911-7919. PubMed ID: 32441916 [TBL] [Abstract][Full Text] [Related]
4. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
5. High performance triboelectric nanogenerators with aligned carbon nanotubes. Wang H; Shi M; Zhu K; Su Z; Cheng X; Song Y; Chen X; Liao Z; Zhang M; Zhang H Nanoscale; 2016 Nov; 8(43):18489-18494. PubMed ID: 27778008 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Output Performance of a Triboelectric Nanogenerator Based on Modified Polyimide and Sandwich-Structured Nanocomposite Film. Zhou J; Lu C; Lan D; Zhang Y; Lin Y; Wan L; Wei W; Liang Y; Guo D; Liu Y; Yu W Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985950 [TBL] [Abstract][Full Text] [Related]
7. Structure-Foldable and Performance-Tailorable PI Paper-Based Triboelectric Nanogenerators Processed and Controlled by Laser-Induced Graphene. Yang W; Han M; Liu F; Wang D; Gao Y; Wang G; Ding X; Luo S Adv Sci (Weinh); 2024 Jul; 11(28):e2310017. PubMed ID: 38747256 [TBL] [Abstract][Full Text] [Related]
8. In Situ Sputtering Silver Induction Electrode for Stable and Stretchable Triboelectric Nanogenerators. Yao J; Zhang Q; Zhang H; Li M; Lu X; Xiao Y; Yao R; Wang X Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683318 [TBL] [Abstract][Full Text] [Related]
9. Improving the Performance of Polydimethylsiloxane-Based Triboelectric Nanogenerators by Introducing CdS Particles into the Polydimethylsiloxane Layer. Mao J; Seo S Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999297 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Piezoelectric/Triboelectric Wearable Nanogenerator Based on Stretchable PVDF-PDMS Composite Films. Chen Q; Cao Y; Lu Y; Akram W; Ren S; Niu L; Sun Z; Fang J ACS Appl Mater Interfaces; 2024 Feb; 16(5):6239-6249. PubMed ID: 38272672 [TBL] [Abstract][Full Text] [Related]
11. Enhanced-Performance Triboelectric Nanogenerator Based on Polydimethylsiloxane/Barium Titanate/Graphene Quantum Dot Nanocomposites for Energy Harvesting. Hatta FF; Mohammad Haniff MAS; Ambri Mohamed M ACS Omega; 2024 Feb; 9(5):5608-5615. PubMed ID: 38343971 [TBL] [Abstract][Full Text] [Related]
12. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Polyimide-Based Water-Solid Triboelectric Nanogenerator for Hydropower Harvesting. Tang N; Zheng Y; Yuan M; Jin K; Haick H ACS Appl Mater Interfaces; 2021 Jul; 13(27):32106-32114. PubMed ID: 34223763 [TBL] [Abstract][Full Text] [Related]
14. Stretchable and Elastic Triboelectric Nanogenerator with Liquid-Metal Grid-Patterned Single Electrode for Wearable Energy-Harvesting Devices. Wei Y; Bhuyan P; Zhang Q; Kim S; Bae Y; Singh M; Park S Macromol Rapid Commun; 2024 Nov; 45(21):e2400321. PubMed ID: 39283823 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. Gu GQ; Han CB; Tian JJ; Lu CX; He C; Jiang T; Li Z; Wang ZL ACS Appl Mater Interfaces; 2017 Apr; 9(13):11882-11888. PubMed ID: 28299934 [TBL] [Abstract][Full Text] [Related]
16. Flexible Triboelectric Nanogenerators based on Hydrogel/g-C Xiao Y; Li Z; Xu B ACS Appl Mater Interfaces; 2024 Mar; 16(11):13674-13684. PubMed ID: 38457219 [TBL] [Abstract][Full Text] [Related]
17. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. Zhang W; Liu Q; Chao S; Liu R; Cui X; Sun Y; Ouyang H; Li Z ACS Appl Mater Interfaces; 2021 Sep; 13(36):42966-42976. PubMed ID: 34473476 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. Jing X; Li H; Mi HY; Feng PY; Tao X; Liu Y; Liu C; Shen C ACS Appl Mater Interfaces; 2020 May; 12(20):23474-23483. PubMed ID: 32352755 [TBL] [Abstract][Full Text] [Related]
19. Characterization of PI/PVDF-TrFE Composite Nanofiber-Based Triboelectric Nanogenerators Depending on the Type of the Electrospinning System. Kim Y; Wu X; Lee C; Oh JH ACS Appl Mater Interfaces; 2021 Aug; 13(31):36967-36975. PubMed ID: 34339166 [TBL] [Abstract][Full Text] [Related]
20. Trap Distribution and Conductivity Synergic Optimization of High-Performance Triboelectric Nanogenerators for Self-Powered Devices. Lv S; Zhang X; Huang T; Yu H; Zhang Q; Zhu M ACS Appl Mater Interfaces; 2021 Jan; 13(2):2566-2575. PubMed ID: 33411491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]