These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31117383)

  • 1. Noncovalent Functionalization of Carbon Substrates with Hydrogels Improves Structural Analysis of Vitrified Proteins by Electron Cryo-Microscopy.
    Scherr J; Neuhaus A; Parey K; Klusch N; Murphy BJ; Zickermann V; Kühlbrandt W; Terfort A; Rhinow D
    ACS Nano; 2019 Jun; 13(6):7185-7190. PubMed ID: 31117383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of charge on protein preferred orientation at the air-water interface in cryo-electron microscopy.
    Li B; Zhu D; Shi H; Zhang X
    J Struct Biol; 2021 Dec; 213(4):107783. PubMed ID: 34454014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Perforated Hydrogel Nanomembranes Facilitate Structural Analysis of Proteins by Electron Cryo-Microscopy.
    Scherr J; Parey K; Klusch N; Murphy BJ; Balser S; Neuhaus A; Zickermann V; Kühlbrandt W; Terfort A; Rhinow D
    ACS Nano; 2017 Jun; 11(6):6467-6473. PubMed ID: 28598595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Protein Cryo-EM: Cryo-Grid Optimization and Data Collection with Protein in Detergent.
    Bloch M; Santiveri M; Taylor NMI
    Methods Mol Biol; 2020; 2127():227-244. PubMed ID: 32112326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of surfactants in electron cryo-microscopy film preparation.
    Michon B; López-Sánchez U; Degrouard J; Nury H; Leforestier A; Rio E; Salonen A; Zoonens M
    Biophys J; 2023 May; 122(10):1846-1857. PubMed ID: 37077048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to achieve homogeneous dispersion of large transmembrane complexes within the holes of carbon films for electron cryomicroscopy.
    Cheung M; Kajimura N; Makino F; Ashihara M; Miyata T; Kato T; Namba K; Blocker AJ
    J Struct Biol; 2013 Apr; 182(1):51-6. PubMed ID: 23356983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.
    Hauer F; Gerle C; Fischer N; Oshima A; Shinzawa-Itoh K; Shimada S; Yokoyama K; Fujiyoshi Y; Stark H
    Structure; 2015 Sep; 23(9):1769-1775. PubMed ID: 26278176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional crystallization by dialysis for structural studies of membrane proteins by the cryo-EM method electron crystallography.
    Johnson MC; Schmidt-Krey I
    Methods Cell Biol; 2013; 113():325-37. PubMed ID: 23317909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of amphipathic polymers for cryo electron microscopy of NADH:ubiquinone oxidoreductase (complex I).
    Flötenmeyer M; Weiss H; Tribet C; Popot JL; Leonard K
    J Microsc; 2007 Sep; 227(Pt 3):229-35. PubMed ID: 17760617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles.
    Schmidt-Krey I; Rubinstein JL
    Micron; 2011 Feb; 42(2):107-16. PubMed ID: 20678942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Cryo-Electron Microscopy Structure Determination of
    Tran NL; Senko S; Lucier KW; Farwell AC; Silva SM; Dip PV; Poweleit N; Scapin G; Catalano C
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of membrane protein complexes by single particle electron microscopy.
    Rubinstein JL
    Methods; 2007 Apr; 41(4):409-16. PubMed ID: 17367713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CryoEM reconstructions of membrane proteins solved in several amphipathic solvents, nanodisc, amphipol and detergents, yield amphipathic belts of similar sizes corresponding to a common ordered solvent layer.
    Zampieri V; Gobet A; Robert X; Falson P; Chaptal V
    Biochim Biophys Acta Biomembr; 2021 Nov; 1863(11):183693. PubMed ID: 34271006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Membrane Proteins Using Cryo-Electron Microscopy.
    Carvalho V; Pronk JW; Engel AH
    Curr Protoc Protein Sci; 2018 Nov; 94(1):e72. PubMed ID: 30199146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography.
    Uddin YM; Schmidt-Krey I
    Methods Enzymol; 2015; 557():351-62. PubMed ID: 25950973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure determination of membrane protein by both cryo-electron tomography and single particle analysis.
    Trépout S; Taveau JC; Lambert O
    Methods Mol Biol; 2010; 654():207-20. PubMed ID: 20665268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing lipid membrane structure with cryo-EM: past, present, and future.
    Sharma KD; Heberle FA; Waxham MN
    Emerg Top Life Sci; 2023 Mar; 7(1):55-65. PubMed ID: 36606590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo Electron Microscopy of TRP Channels.
    Samanta A; Hughes TET; Moiseenkova-Bell VY
    Methods Mol Biol; 2019; 1987():39-50. PubMed ID: 31028672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Graphene Grids for Cryoelectron Microscopy.
    Fan H; Sun F
    Front Mol Biosci; 2022; 9():937253. PubMed ID: 35911962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
    Efremov RG; Gatsogiannis C; Raunser S
    Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.