BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31117441)

  • 1. Multiplexed Readout of Enzymatic Reactions by Means of Laterally Resolved Illumination of Quantum Dot Electrodes.
    Zhao S; Völkner J; Riedel M; Witte G; Yue Z; Lisdat F; Parak WJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21830-21839. PubMed ID: 31117441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical sensor based on quantum dots and sarcosine oxidase.
    Riedel M; Göbel G; Abdelmonem AM; Parak WJ; Lisdat F
    Chemphyschem; 2013 Jul; 14(10):2338-42. PubMed ID: 23589424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots.
    Tanne J; Schäfer D; Khalid W; Parak WJ; Lisdat F
    Anal Chem; 2011 Oct; 83(20):7778-85. PubMed ID: 21870859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples.
    Rebelo TS; Pereira CM; Sales MG; Noronha JP; Costa-Rodrigues J; Silva F; Fernandes MH
    Anal Chim Acta; 2014 Nov; 850():26-32. PubMed ID: 25441156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic in situ generation of covalently conjugated electron acceptor of PbSe quantum dots for high throughput and versatile photoelectrochemical bioanalysis.
    Wang H; Yuan F; Wu X; Dong Y; Wang GL
    Anal Chim Acta; 2019 Jun; 1058():1-8. PubMed ID: 30851843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis.
    Schubert K; Khalid W; Yue Z; Parak WJ; Lisdat F
    Langmuir; 2010 Jan; 26(2):1395-400. PubMed ID: 19761232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation.
    Riedel M; Sabir N; Scheller FW; Parak WJ; Lisdat F
    Nanoscale; 2017 Feb; 9(8):2814-2823. PubMed ID: 28155960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Semiconducting Polymer/Graphene Networks: Toward Sensitive Photocathodic Enzymatic Bioanalysis.
    Shi XM; Wang CD; Zhu YC; Zhao WW; Yu XD; Xu JJ; Chen HY
    Anal Chem; 2018 Aug; 90(16):9687-9690. PubMed ID: 30078328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots.
    Wang W; Bao L; Lei J; Tu W; Ju H
    Anal Chim Acta; 2012 Sep; 744():33-8. PubMed ID: 22935371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.
    Sağlam Ö; Kızılkaya B; Uysal H; Dilgin Y
    Talanta; 2016 Jan; 147():315-21. PubMed ID: 26592613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode.
    Khalid W; Göbel G; Hühn D; Montenegro JM; Rivera-Gil P; Lisdat F; Parak WJ
    J Nanobiotechnology; 2011 Oct; 9():46. PubMed ID: 21982200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing.
    Cao L; Ye J; Tong L; Tang B
    Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates.
    Jang E; Kim S; Koh WG
    Biosens Bioelectron; 2012 Jan; 31(1):529-36. PubMed ID: 22177543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor-liquid-solid grown silica nanowire based electrochemical glucose biosensor.
    Murphy-Pérez E; Arya SK; Bhansali S
    Analyst; 2011 Apr; 136(8):1686-9. PubMed ID: 21369619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor.
    Zhao M; Li Z; Han Z; Wang K; Zhou Y; Huang J; Ye Z
    Biosens Bioelectron; 2013 Nov; 49():318-22. PubMed ID: 23792653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical DNA biosensor based on g-C
    Li PP; Liu XP; Mao CJ; Jin BK; Zhu JJ
    Anal Chim Acta; 2019 Feb; 1048():42-49. PubMed ID: 30598156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dots on electrodes--new tools for bioelectroanalysis.
    Lisdat F; Schäfer D; Kapp A
    Anal Bioanal Chem; 2013 Apr; 405(11):3739-52. PubMed ID: 23435451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.
    Liu Q; Lu X; Li J; Yao X; Li J
    Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications.
    Yu EH; Prodanovic R; Güven G; Ostafe R; Schwaneberg U
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1448-57. PubMed ID: 21915588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.
    Huang T; Liu Z; Li Y; Li Y; Chao L; Chen C; Tan Y; Xie Q; Yao S; Wu Y
    Anal Chim Acta; 2018 Jul; 1013():26-35. PubMed ID: 29501089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.