BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 31117448)

  • 1. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage.
    Wang E; Kong X; Rong X; Yao C; Yang H; Qi C
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage.
    An J; Liang W; Mu P; Wang C; Chen T; Zhu Z; Sun H; Li A
    ACS Omega; 2019 Mar; 4(3):4848-4855. PubMed ID: 31459669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials.
    Williams JD; Peterson GP
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable Energy Capsules with Nano-SiO
    Graham M; Smith J; Bilton M; Shchukina E; Novikov AA; Vinokurov V; Shchukin DG
    ACS Nano; 2020 Jul; 14(7):8894-8901. PubMed ID: 32539347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralight and Flexible Carbon Foam-Based Phase Change Composites with High Latent-Heat Capacity and Photothermal Conversion Capability.
    Wang W; Cai Y; Du M; Hou X; Liu J; Ke H; Wei Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31997-32007. PubMed ID: 31393694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lauric acid-hybridized bentonite composite phase-changing material for thermal energy storage.
    Liu S; Han J; Wang L; Gao Y; Sun H; Li W
    RSC Adv; 2020 Jul; 10(43):25864-25873. PubMed ID: 35518617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage.
    Liu P; Gu X; Zhang Z; Rao J; Shi J; Wang B; Bian L
    ACS Omega; 2019 Sep; 4(12):14962-14969. PubMed ID: 31552337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and Reliability of Caprylic Acid-Stearyl Alcohol Binary Mixture as Phase Change Material for a Cold Energy Storage System.
    Ayaz H; Chinnasamy V; Cho H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.
    Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV
    Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal properties and behavior of microencapsulated sugarcane wax phase change material.
    Tangsiriratana E; Skolpap W; Patterson RJ; Sriprapha K
    Heliyon; 2019 Aug; 5(8):e02184. PubMed ID: 31463385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azelaic Acid/Expanded Graphite Composites with High Latent Heat Storage Capacity and Thermal Conductivity at Medium Temperature.
    Nguyen GT; Hwang HS; Lee J; Park I
    ACS Omega; 2021 Mar; 6(12):8469-8476. PubMed ID: 33817508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Healable supramolecular micelle/nano-encapsulated metal composite phase change material for thermal energy storage.
    Muhabie AA
    RSC Adv; 2023 Sep; 13(39):27624-27633. PubMed ID: 37720835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage.
    Patel D; Wei W; Singh H; Xu K; Beck C; Wildy M; Schossig J; Hu X; Hyun DC; Chen W; Lu P
    ACS Sustain Chem Eng; 2023 Aug; 11(31):11570-11579. PubMed ID: 37564956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of SA-PA-LA/EG/CF CPCM and Its Application in Battery Thermal Management.
    Liu Z; Huang J; Cao M; Zhang Y; Hu J; Chen Q
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage.
    Yazdani MR; Ajdary R; Kankkunen A; Rojas OJ; Seppälä A
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6188-6200. PubMed ID: 33522810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).
    Ferrer G; Barreneche C; Solé A; Juliá JE; Cabeza LF
    Recent Pat Nanotechnol; 2017 Jul; 11(2):101-108. PubMed ID: 28049393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.