These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31117479)

  • 1. Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach.
    Lei T; Guo W; Liu Q; Jiao H; Cao DB; Teng B; Li YW; Liu X; Wen XD
    J Chem Theory Comput; 2019 Jun; 15(6):3654-3665. PubMed ID: 31117479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Coke Formation and Removal under Operating Conditions with a Quantum Nanoreactor Approach.
    Lei T; Liu X; Pathak AD; Shetty S; Liu Q; Wen X
    J Phys Chem Lett; 2021 Oct; 12(39):9413-9421. PubMed ID: 34553945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined DFTB nanoreactor and reaction network generator approach for the mechanism of hydrocarbon combustion.
    Bai J; Liu X; Lei T; Teng B; Wen X
    Chem Commun (Camb); 2021 Nov; 57(88):11633-11636. PubMed ID: 34697614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering chemistry with an ab initio nanoreactor.
    Wang LP; Titov A; McGibbon R; Liu F; Pande VS; Martínez TJ
    Nat Chem; 2014 Dec; 6(12):1044-8. PubMed ID: 25411881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared spectra of HC≡C-MH and M-η2-(C2H2) produced in reactions of laser-ablated group 5 transition-metal atoms with acetylene.
    Cho HG; Andrews L
    J Phys Chem A; 2010 Sep; 114(37):10028-39. PubMed ID: 20726617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations.
    Qi T; Bauschlicher CW; Lawson JW; Desai TG; Reed EJ
    J Phys Chem A; 2013 Nov; 117(44):11115-25. PubMed ID: 24094313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystalline Ni3C as both carbon source and catalyst for graphene nucleation: a QM/MD study.
    Jiao M; Li K; Guan W; Wang Y; Wu Z; Page A; Morokuma K
    Sci Rep; 2015 Jul; 5():12091. PubMed ID: 26169042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen.
    Krishnapriyan A; Yang P; Niklasson AMN; Cawkwell MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6191-6200. PubMed ID: 29039935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical molecular dynamics simulations of dynamic fullerene self-assembly in benzene combustion.
    Saha B; Shindo S; Irle S; Morokuma K
    ACS Nano; 2009 Aug; 3(8):2241-57. PubMed ID: 19702322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method.
    Witek HA; Morokuma K
    J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional tight binding-based free energy simulations in the DFTB+ program.
    Mitchell I; Aradi B; Page AJ
    J Comput Chem; 2018 Nov; 39(29):2452-2458. PubMed ID: 30238475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations.
    Saha B; Irle S; Morokuma K
    J Chem Phys; 2010 Jun; 132(22):224303. PubMed ID: 20550393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen.
    Habib MR; Liang T; Yu X; Pi X; Liu Y; Xu M
    Rep Prog Phys; 2018 Mar; 81(3):036501. PubMed ID: 29355108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra.
    Page AJ; Chou CP; Pham BQ; Witek HA; Irle S; Morokuma K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3725-35. PubMed ID: 23388654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.