BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31117503)

  • 1. Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core-Multilayer-Shell Structure: Fabrication, Stability, and Foamability.
    Chen X; Chen Y; Zou L; Zhang X; Dong Y; Tang J; McClements DJ; Liu W
    J Agric Food Chem; 2019 Jun; 67(23):6574-6584. PubMed ID: 31117503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex bio-nanoparticles assembled by a pH-driven method: environmental stress stability and oil-water interfacial behavior.
    Chen Y; Chen X; Luo S; Chen T; Ye J; Liu C
    J Sci Food Agric; 2024 Mar; 104(4):1971-1983. PubMed ID: 37897157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface.
    Peng D; Jin W; Li J; Xiong W; Pei Y; Wang Y; Li Y; Li B
    J Agric Food Chem; 2017 Mar; 65(11):2454-2460. PubMed ID: 28241119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foaming properties of wheat gliadin.
    Thewissen BG; Celus I; Brijs K; Delcour JA
    J Agric Food Chem; 2011 Feb; 59(4):1370-5. PubMed ID: 21261252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.
    McClements DJ; Gumus CE
    Adv Colloid Interface Sci; 2016 Aug; 234():3-26. PubMed ID: 27181392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato.
    Wu X; Hu Q; Liang X; Fang S
    Food Chem; 2022 Oct; 391():133288. PubMed ID: 35623282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles.
    Yang S; Dai L; Mao L; Liu J; Yuan F; Li Z; Gao Y
    Int J Biol Macromol; 2019 Sep; 136():653-660. PubMed ID: 31195045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of quercetin and sodium chloride concentrations on wheat gliadin structure and physicochemical properties.
    Wang Q; Tang Y; Yang Y; Lei L; Zhao J; Zhang Y; Li L; Wang Q; Ming J
    J Sci Food Agric; 2021 Apr; 101(6):2511-2518. PubMed ID: 33063332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization of gliadin in aqueous media under physiological digestive pHs.
    Herrera MG; Veuthey TV; Dodero VI
    Colloids Surf B Biointerfaces; 2016 May; 141():565-575. PubMed ID: 26897550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein-Lecithin Composite Colloidal Nanoparticles.
    Dai L; Sun C; Wang D; Gao Y
    PLoS One; 2016; 11(11):e0167172. PubMed ID: 27893802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles.
    Ebert S; Koo CK; Weiss J; McClements DJ
    Food Res Int; 2017 Feb; 92():48-55. PubMed ID: 28290297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction, identification and application of gliadin from gluten: Impact of pH on physicochemical properties of unloaded- and lutein-loaded gliadin nanoparticles.
    Tong Z; Zhang L; Liao W; Wang Y; Gao Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126638. PubMed ID: 37673163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning optimum transfection of gemini surfactant-phospholipid-DNA nanoparticles by validated theoretical modeling.
    Taheri-Araghi S; Chen DW; Kohandel M; Sivaloganathan S; Foldvari M
    Nanoscale; 2019 Jan; 11(3):1037-1046. PubMed ID: 30569915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells.
    Gulfam M; Kim JE; Lee JM; Ku B; Chung BH; Chung BG
    Langmuir; 2012 May; 28(21):8216-23. PubMed ID: 22568862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural properties of gliadin as influenced by pH, extraction protocols, and wheat cultivars.
    Rani M; Siddiqi RA; Sharma R; Gill BS; Sogi DS
    Int J Biol Macromol; 2023 Apr; 234():123484. PubMed ID: 36731704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Effect of Ionic Strength on the Freeze-Thaw Stability.
    Qin XS; Luo ZG; Peng XC; Lu XX; Zou YX
    J Agric Food Chem; 2018 Aug; 66(31):8363-8370. PubMed ID: 30016098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation.
    Davidov-Pardo G; Joye IJ; Espinal-Ruiz M; McClements DJ
    J Agric Food Chem; 2015 Sep; 63(38):8510-8. PubMed ID: 26335612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of frozen storage on the foaming properties of wheat gliadin.
    Wang P; Tao H; Wu F; Yang N; Chen F; Jin Z; Xu X
    Food Chem; 2014 Dec; 164():44-9. PubMed ID: 24996303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGylation of supercooled smectic cholesteryl myristate nanoparticles.
    Mengersen F; Bunjes H
    Eur J Pharm Biopharm; 2012 Jun; 81(2):409-17. PubMed ID: 22487056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties.
    Schmitt C; Bovay C; Rouvet M; Shojaei-Rami S; Kolodziejczyk E
    Langmuir; 2007 Apr; 23(8):4155-66. PubMed ID: 17341103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.