BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31117516)

  • 1. Development of Peptide-Based Sirtuin Defatty-Acylase Inhibitors Identified by the Fluorescence Probe, SFP3, That Can Efficiently Measure Defatty-Acylase Activity of Sirtuin.
    Kawaguchi M; Ieda N; Nakagawa H
    J Med Chem; 2019 Jun; 62(11):5434-5452. PubMed ID: 31117516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
    Young Hong J; Cao J; Lin H
    Methods Mol Biol; 2019; 2009():129-136. PubMed ID: 31152400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors.
    Nakajima Y; Kawaguchi M; Ieda N; Nakagawa H
    ACS Med Chem Lett; 2021 Apr; 12(4):617-624. PubMed ID: 33859801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling.
    Zhang S; Spiegelman NA; Lin H
    Methods Mol Biol; 2019; 2009():137-147. PubMed ID: 31152401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A homogeneous time-resolved fluorescence screen to identify SIRT2 deacetylase and defatty-acylase inhibitors.
    Yang J; Cassel J; Boyle BC; Oppong D; Ahn YH; Weiser BP
    PLoS One; 2024; 19(6):e0305000. PubMed ID: 38913635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Screening Identifies Ascorbyl Palmitate as a SIRT2 Deacetylase and Defatty-Acylase Inhibitor.
    Hong JY; Cassel J; Yang J; Lin H; Weiser BP
    ChemMedChem; 2021 Nov; 16(22):3484-3494. PubMed ID: 34382754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy.
    Hong JY; Jing H; Price IR; Cao J; Bai JJ; Lin H
    ACS Med Chem Lett; 2020 Nov; 11(11):2305-2311. PubMed ID: 33214845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the functional contribution of the defatty-acylase activity of SIRT6.
    Zhang X; Khan S; Jiang H; Antonyak MA; Chen X; Spiegelman NA; Shrimp JH; Cerione RA; Lin H
    Nat Chem Biol; 2016 Aug; 12(8):614-20. PubMed ID: 27322069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2.
    Kudo N; Ito A; Arata M; Nakata A; Yoshida M
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A FRET-based assay for screening SIRT6 modulators.
    Li Y; You L; Huang W; Liu J; Zhu H; He B
    Eur J Med Chem; 2015; 96():245-9. PubMed ID: 25884115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation.
    Rooker DR; Klyubka Y; Gautam R; Tomat E; Buccella D
    Chembiochem; 2018 Mar; 19(5):496-504. PubMed ID: 29235227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).
    Trapp J; Meier R; Hongwiset D; Kassack MU; Sippl W; Jung M
    ChemMedChem; 2007 Oct; 2(10):1419-31. PubMed ID: 17628866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Dimerization on the Deacylase Activities of Human SIRT2.
    Yang J; Nicely NI; Weiser BP
    Biochemistry; 2023 Dec; 62(23):3383-3395. PubMed ID: 37966275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors.
    Yang L; Ma X; He Y; Yuan C; Chen Q; Li G; Chen X
    Sci China Life Sci; 2017 Mar; 60(3):249-256. PubMed ID: 27858336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRT7 Is an RNA-Activated Protein Lysine Deacylase.
    Tong Z; Wang M; Wang Y; Kim DD; Grenier JK; Cao J; Sadhukhan S; Hao Q; Lin H
    ACS Chem Biol; 2017 Jan; 12(1):300-310. PubMed ID: 27997115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines.
    Zessin M; Meleshin M; Hilscher S; Schiene-Fischer C; Barinka C; Jung M; Schutkowski M
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive fluorogenic substrates for sirtuin deacylase inhibitor discovery.
    Yang LL; Wang HL; Yan YH; Liu S; Yu ZJ; Huang MY; Luo Y; Zheng X; Yu Y; Li GB
    Eur J Med Chem; 2020 Apr; 192():112201. PubMed ID: 32163813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitors of NAD+ dependent histone deacetylases (sirtuins).
    Neugebauer RC; Sippl W; Jung M
    Curr Pharm Des; 2008; 14(6):562-73. PubMed ID: 18336301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation.
    Galleano I; Schiedel M; Jung M; Madsen AS; Olsen CA
    J Med Chem; 2016 Feb; 59(3):1021-31. PubMed ID: 26788965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.