These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31117529)

  • 1. Stream Transport and Retention of Environmental DNA Pulse Releases in Relation to Hydrogeomorphic Scaling Factors.
    Fremier AK; Strickler KM; Parzych J; Powers S; Goldberg CS
    Environ Sci Technol; 2019 Jun; 53(12):6640-6649. PubMed ID: 31117529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams.
    Shogren AJ; Tank JL; Egan SP; August O; Rosi EJ; Hanrahan BR; Renshaw MA; Gantz CA; Bolster D
    Environ Sci Technol; 2018 Aug; 52(15):8530-8537. PubMed ID: 29995389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system.
    Song JW; Small MJ; Casman EA
    Sci Total Environ; 2017 Dec; 605-606():713-720. PubMed ID: 28675881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controls on eDNA movement in streams: Transport, Retention, and Resuspension.
    Shogren AJ; Tank JL; Andruszkiewicz E; Olds B; Mahon AR; Jerde CL; Bolster D
    Sci Rep; 2017 Jul; 7(1):5065. PubMed ID: 28698557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.
    Goldberg CS; Pilliod DS; Arkle RS; Waits LP
    PLoS One; 2011; 6(7):e22746. PubMed ID: 21818382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers.
    Macher JN; Vivancos A; Piggott JJ; Centeno FC; Matthaei CD; Leese F
    Mol Ecol Resour; 2018 Nov; 18(6):1456-1468. PubMed ID: 30129704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No filters, no fridges: a method for preservation of water samples for eDNA analysis.
    Williams KE; Huyvaert KP; Piaggio AJ
    BMC Res Notes; 2016 Jun; 9():298. PubMed ID: 27278936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications.
    Coble AA; Flinders CA; Homyack JA; Penaluna BE; Cronn RC; Weitemier K
    Sci Total Environ; 2019 Feb; 649():1157-1170. PubMed ID: 30308887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of sediment and stream transport on detecting a source of environmental DNA.
    Nevers MB; Przybyla-Kelly K; Shively D; Morris CC; Dickey J; Byappanahalli MN
    PLoS One; 2020; 15(12):e0244086. PubMed ID: 33370371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms.
    Mächler E; Osathanunkul M; Altermatt F
    PLoS One; 2018; 13(4):e0195529. PubMed ID: 29624607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems.
    Stoeckle BC; Beggel S; Cerwenka AF; Motivans E; Kuehn R; Geist J
    PLoS One; 2017; 12(12):e0189119. PubMed ID: 29220394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.
    Balasingham KD; Walter RP; Heath DD
    Mol Ecol Resour; 2017 May; 17(3):523-532. PubMed ID: 27617668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments.
    Shogren AJ; Tank JL; Andruszkiewicz EA; Olds B; Jerde C; Bolster D
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27251680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta).
    Akre TS; Parker LD; Ruther E; Maldonado JE; Lemmon L; McInerney NR
    PLoS One; 2019; 14(4):e0215586. PubMed ID: 31017960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of an invasive aquatic plant in natural water bodies using environmental DNA.
    Anglès d'Auriac MB; Strand DA; Mjelde M; Demars BOL; Thaulow J
    PLoS One; 2019; 14(7):e0219700. PubMed ID: 31299064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA.
    Jerde CL; Olds BP; Shogren AJ; Andruszkiewicz EA; Mahon AR; Bolster D; Tank JL
    Environ Sci Technol; 2016 Aug; 50(16):8770-9. PubMed ID: 27409250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.
    Katano I; Harada K; Doi H; Souma R; Minamoto T
    PLoS One; 2017; 12(5):e0176541. PubMed ID: 28520733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the fate of brown trout (Salmo trutta) environmental DNA in a natural stream using a sensitive and specific dual-labelled probe.
    Deutschmann B; Müller AK; Hollert H; Brinkmann M
    Sci Total Environ; 2019 Mar; 655():321-327. PubMed ID: 30471600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation in environmental DNA detection in sediment and water samples.
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2018; 13(1):e0191737. PubMed ID: 29352294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.