These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31117585)

  • 1. The Clusterization Technique: A Systematic Search for the Resonance Energies Obtained via Padé.
    Landau A; Haritan I
    J Phys Chem A; 2019 Jun; 123(24):5091-5105. PubMed ID: 31117585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations.
    Landau A; Haritan I; Kaprálová-Žd'ánská PR; Moiseyev N
    J Phys Chem A; 2016 May; 120(19):3098-108. PubMed ID: 26677725
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Bhattacharya D; Landau A; Moiseyev N
    J Phys Chem Lett; 2020 Jul; 11(14):5601-5609. PubMed ID: 32579364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular resonances by removing complex absorbing potentials via Padé; Application to CO
    Landau A; Moiseyev N
    J Chem Phys; 2016 Oct; 145(16):164111. PubMed ID: 27802657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio complex potential energy curves of the He
    Landau A; Ben-Asher A; Gokhberg K; Cederbaum LS; Moiseyev N
    J Chem Phys; 2020 May; 152(18):184303. PubMed ID: 32414260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé.
    Bouskila G; Landau A; Haritan I; Moiseyev N; Bhattacharya D
    J Chem Phys; 2022 May; 156(19):194101. PubMed ID: 35597649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the calculation of resonances by analytic continuation of eigenvalues from the stabilization graph.
    Haritan I; Moiseyev N
    J Chem Phys; 2017 Jul; 147(1):014101. PubMed ID: 28688390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporally Coarse-Grained All-Atom Molecular Dynamics Achieved via Stochastic Padé Approximants.
    Sereda YV; Ortoleva PJ
    J Phys Chem B; 2020 Feb; 124(8):1392-1410. PubMed ID: 31958947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyatomic ab Initio Complex Potential Energy Surfaces: Illustration of Ultracold Collisions.
    Bhattacharya D; Ben-Asher A; Haritan I; Pawlak M; Landau A; Moiseyev N
    J Chem Theory Comput; 2017 Apr; 13(4):1682-1690. PubMed ID: 28287719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform vs Partial Scaling within Resonances via Padé Based on the Similarities to Other Non-Hermitian Methods: Illustration for the Beryllium 1
    Ben-Asher A; Landau A; Moiseyev N
    J Chem Theory Comput; 2021 Jun; 17(6):3435-3444. PubMed ID: 33945263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Energies and Lifetimes from the Analytic Continuation of the Coupling Constant Method: Robust Algorithms and a Critical Analysis.
    Sommerfeld T; Melugin JB; Hamal P; Ehara M
    J Chem Theory Comput; 2017 Jun; 13(6):2550-2560. PubMed ID: 28426206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fano-Feshbach formalism applied to the calculation of autoionization widths through analytic continuation.
    Oliveira AP; Jalbert G; Rocha AB
    J Chem Phys; 2022 Jun; 156(24):244116. PubMed ID: 35778104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct application of Padé approximant for solving nonlinear differential equations.
    Vazquez-Leal H; Benhammouda B; Filobello-Nino U; Sarmiento-Reyes A; Jimenez-Fernandez VM; Garcia-Gervacio JL; Huerta-Chua J; Morales-Mendoza LJ; Gonzalez-Lee M
    Springerplus; 2014; 3():563. PubMed ID: 25332863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Electron Propagator Approach Based on a Multiconfigurational Reference State for the Investigation of Negative-Ion Resonances Using a Complex Absorbing Potential Method.
    Das S; Sajeev Y; Samanta K
    J Chem Theory Comput; 2020 Aug; 16(8):5024-5034. PubMed ID: 32568537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the resonance energy and width of the (2)B(2g) shape resonance of ethylene with the method of analytical continuation in the coupling constant.
    Horáček J; Paidarová I; Curík R
    J Phys Chem A; 2014 Aug; 118(33):6536-41. PubMed ID: 24955648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules.
    White AF; Head-Gordon M; McCurdy CW
    J Chem Phys; 2017 Jan; 146(4):044112. PubMed ID: 28147521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflection-free complex absorbing potential for electronic structure calculations: Feshbach-type autoionization resonances of molecules.
    Sajeev Y; Moiseyev N
    J Chem Phys; 2007 Jul; 127(3):034105. PubMed ID: 17655429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust quantification of short echo time 1H magnetic resonance spectra using the Padé approximant.
    Williamson DC; Hawesa H; Thacker NA; Williams SR
    Magn Reson Med; 2006 Apr; 55(4):762-71. PubMed ID: 16528703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.
    Yang X; Zhang DH
    Acc Chem Res; 2008 Aug; 41(8):981-9. PubMed ID: 18710199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.