BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31117605)

  • 1. Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces.
    Bilodeau CL; Lau EY; Cramer SM; Garde S
    J Phys Chem B; 2019 Jun; 123(23):4833-4843. PubMed ID: 31117605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein-Ligand Interactions.
    Bilodeau CL; Lau EY; Roush DJ; Snyder MA; Cramer SM
    J Phys Chem B; 2021 Jun; 125(23):6112-6120. PubMed ID: 34097423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.
    Woo J; Parimal S; Brown MR; Heden R; Cramer SM
    J Chromatogr A; 2015 Sep; 1412():33-42. PubMed ID: 26292626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography.
    Gudhka RB; Roush DJ; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461479. PubMed ID: 32822997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Multimodal Ligands with Proteins: Insights into Selectivity Using Molecular Dynamics Simulations.
    Parimal S; Garde S; Cramer SM
    Langmuir; 2015 Jul; 31(27):7512-23. PubMed ID: 26030224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing IgG1 F
    Gudhka RB; Vats M; Bilodeau CL; McCallum SA; McCoy MA; Roush DJ; Snyder MA; Cramer SM
    Langmuir; 2021 Oct; 37(41):12188-12203. PubMed ID: 34633195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arginine on multimodal anion exchange chromatography.
    Hirano A; Arakawa T; Kameda T
    Protein Expr Purif; 2015 Dec; 116():105-12. PubMed ID: 26225914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of arginine with Capto MMC in multimodal chromatography.
    Hirano A; Arakawa T; Kameda T
    J Chromatogr A; 2014 Apr; 1338():58-66. PubMed ID: 24642397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Monovalent Cations on the Structure and Dynamics of Multimodal Chromatographic Surfaces.
    Lau SC; Bilodeau CL
    Langmuir; 2024 Apr; 40(13):6694-6702. PubMed ID: 38518252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Ligand-Ligand Interactions in Multimodal Ligand Conformational Equilibria and Surface Pattern Formation.
    Bilodeau CL; Lau EY; Cramer SM; Garde S
    Langmuir; 2020 Aug; 36(31):9054-9063. PubMed ID: 32589849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.
    Karkov HS; Woo J; Krogh BO; Ahmadian H; Cramer SM
    J Chromatogr A; 2015 Dec; 1426():102-9. PubMed ID: 26654254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Unique Selectivity of Hydrophobic Cation Exchanger Nuvia cPrime for the Removal of a Major Process Impurity: A Case Study with IgM.
    He XM; Voß C; Li J
    Curr Protein Pept Sci; 2019; 20(1):65-74. PubMed ID: 29046148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next generation multimodal chromatography resins via an iterative mapping approach: Chemical diversity, high-throughput screening, and chromatographic modelling.
    Shekhawat LK; Markle T; Esfandiarfard K; Theel EK; Maloisel JL; Malmquist G
    J Chromatogr A; 2023 Jun; 1699():464018. PubMed ID: 37119712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on the Application of Mixed-mode Chromatography for Separation of Structure Isoforms.
    Arakawa T
    Curr Protein Pept Sci; 2019; 20(1):56-60. PubMed ID: 28990529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Arginine on Multimodal Chromatography: Experiments and Simulations.
    Hirano A; Shiraki K; Kameda T
    Curr Protein Pept Sci; 2019; 20(1):40-48. PubMed ID: 29065827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.
    Freed AS; Garde S; Cramer SM
    J Phys Chem B; 2011 Nov; 115(45):13320-7. PubMed ID: 21942536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands.
    Woo JA; Chen H; Snyder MA; Chai Y; Frost RG; Cramer SM
    J Chromatogr A; 2015 Aug; 1407():58-68. PubMed ID: 26162668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study.
    Chipot C; Pohorille A
    J Phys Chem B; 1998 Jan; 102(1):281-90. PubMed ID: 11541119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyelectrolyte conformational transition in aqueous solvent mixture influenced by hydrophobic interactions and hydrogen bonding effects: PAA-water-ethanol.
    Sappidi P; Natarajan U
    J Mol Graph Model; 2016 Mar; 64():60-74. PubMed ID: 26803232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a trisaccharide-antibody complex: comparison of NMR measurements with a crystal structure.
    Bundle DR; Baumann H; Brisson JR; Gagné SM; Zdanov A; Cygler M
    Biochemistry; 1994 May; 33(17):5183-92. PubMed ID: 8172893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.