These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31117606)

  • 21. Photoinduced isomerization of the photoactive yellow protein (PYP) chromophore: interplay of two torsions, a HOOP mode and hydrogen bonding.
    Gromov EV; Burghardt I; Köppel H; Cederbaum LS
    J Phys Chem A; 2011 Aug; 115(33):9237-48. PubMed ID: 21744877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of an unusually short hydrogen bond in photoactive yellow protein.
    Saito K; Ishikita H
    Biochim Biophys Acta; 2013 Mar; 1827(3):387-94. PubMed ID: 23201477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-Bonding Interaction Regulates Photoisomerization of a Single-Bond-Rotation Locked Photoactive Yellow Protein Chromophore in Protein.
    Zhang TS; Fang YG; Song XF; Fang WH; Cui G
    J Phys Chem Lett; 2020 Apr; 11(7):2470-2476. PubMed ID: 32150415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein.
    Xie A; Hoff WD; Kroon AR; Hellingwerf KJ
    Biochemistry; 1996 Nov; 35(47):14671-8. PubMed ID: 8942626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong ionic hydrogen bonding causes a spectral isotope effect in photoactive yellow protein.
    Kaledhonkar S; Hara M; Stalcup TP; Xie A; Hoff WD
    Biophys J; 2013 Dec; 105(11):2577-85. PubMed ID: 24314088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Bulk Water Environment in Regulation of Functional Hydrogen-Bond Network in Photoactive Yellow Protein.
    Tamura K; Hayashi S
    J Phys Chem B; 2015 Dec; 119(51):15537-49. PubMed ID: 26598051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen bonding controls excited-state decay of the photoactive yellow protein chromophore.
    Boggio-Pasqua M; Robb MA; Groenhof G
    J Am Chem Soc; 2009 Sep; 131(38):13580-1. PubMed ID: 19728705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visible-light-induced photodimerization of a photoactive yellow protein (PYP) chromophore model in a single crystal.
    Nath NK; Manoj K; Gâz AŞ; Naumov P
    Chemistry; 2013 Jun; 19(25):8094-9. PubMed ID: 23616177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four resonance structures elucidate double-bond isomerisation of a biological chromophore.
    Gromov EV; Domratcheva T
    Phys Chem Chem Phys; 2020 Apr; 22(16):8535-8544. PubMed ID: 32301950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of amino acid residues near the chromophore of photoactive yellow protein.
    Imamoto Y; Koshimizu H; Mihara K; Hisatomi O; Mizukami T; Tsujimoto K; Kataoka M; Tokunaga F
    Biochemistry; 2001 Apr; 40(15):4679-85. PubMed ID: 11294635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel photosystem involving protonation and deprotonation processes modelled on a PYP photocycle.
    Matsuhira T; Tsuchihashi K; Yamamoto H; Okamura TA; Ueyama N
    Org Biomol Chem; 2008 Sep; 6(17):3118-26. PubMed ID: 18698471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic implications of the electron donor-acceptor effect in the photoactive yellow protein chromophore.
    Rocha-Rinza T; Christiansen O; Rahbek DB; Klærke B; Andersen LH; Lincke K; Nielsen MB
    Chemistry; 2010 Oct; 16(39):11977-84. PubMed ID: 20827689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short hydrogen bonds and negative charge in photoactive yellow protein promote fast isomerization but not high quantum yield.
    Zhu J; Vreede J; Hospes M; Arents J; Kennis JT; van Stokkum IH; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2015 Feb; 119(6):2372-83. PubMed ID: 25144816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure of the PYP chromophore in its native protein environment.
    Gromov EV; Burghardt I; Köppel H; Cederbaum LS
    J Am Chem Soc; 2007 May; 129(21):6798-806. PubMed ID: 17474743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein.
    Wei L; Wang H; Chen X; Fang W; Wang H
    Phys Chem Chem Phys; 2014 Dec; 16(46):25263-72. PubMed ID: 25195953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral tuning of the photoactive yellow protein chromophore by H-bonding.
    Rajput J; Rahbek DB; Aravind G; Andersen LH
    Biophys J; 2010 Feb; 98(3):488-92. PubMed ID: 20141763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the hydrogen-bond network around the chromophore of photoactive yellow protein in the ground and excited states.
    Mizuno M; Kamikubo H; Kataoka M; Mizutani Y
    J Phys Chem B; 2011 Jul; 115(29):9306-10. PubMed ID: 21688774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen-bond network probed by time-resolved optoacoustic spectroscopy: photoactive yellow protein and the effect of E46Q and E46A mutations.
    Losi A; Gensch T; van der Horst MA; Hellingwerf KJ; Braslavsky SE
    Phys Chem Chem Phys; 2005 May; 7(10):2229-36. PubMed ID: 19791418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Communication maps of vibrational energy transport through Photoactive Yellow Protein.
    Xu Y; Leitner DM
    J Phys Chem A; 2014 Sep; 118(35):7280-7. PubMed ID: 24552496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonance Raman spectroscopy and quantum chemical calculations reveal structural changes in the active site of photoactive yellow protein.
    Unno M; Kumauchi M; Sasaki J; Tokunaga F; Yamauchi S
    Biochemistry; 2002 Apr; 41(17):5668-74. PubMed ID: 11969428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.