These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31117677)

  • 1. Entangled Photon Resonance Energy Transfer in Arbitrary Media.
    Avanaki KN; Schatz GC
    J Phys Chem Lett; 2019 Jun; 10(11):3181-3188. PubMed ID: 31117677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing disallowed two-atom transitions with temporally entangled photons.
    Muthukrishnan A; Agarwal GS; Scully MO
    Phys Rev Lett; 2004 Aug; 93(9):093002. PubMed ID: 15447095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two bridge-particle-mediated RET between chiral molecules.
    Salam A
    J Chem Phys; 2022 Sep; 157(10):104110. PubMed ID: 36109240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror.
    Weeraddana D; Premaratne M; Gunapala SD; Andrews DL
    J Chem Phys; 2017 Aug; 147(7):074117. PubMed ID: 28830167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations and Entanglement of Microwave Photons Emitted in a Cascade Decay.
    Gasparinetti S; Pechal M; Besse JC; Mondal M; Eichler C; Wallraff A
    Phys Rev Lett; 2017 Oct; 119(14):140504. PubMed ID: 29053288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Photon Scattering Can Account for the Discrepancies among Entangled Two-Photon Measurement Techniques.
    Hickam BP; He M; Harper N; Szoke S; Cushing SK
    J Phys Chem Lett; 2022 Jun; 13(22):4934-4940. PubMed ID: 35635002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entangled Photon Excited Fluorescence in Organic Materials: An Ultrafast Coincidence Detector.
    Varnavski O; Pinsky B; Goodson T
    J Phys Chem Lett; 2017 Jan; 8(2):388-393. PubMed ID: 28029793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers.
    Wahlroos R; Toivonen J; Tirri M; Hänninen P
    J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.
    Ding W; Hsu LY; Schatz GC
    J Chem Phys; 2017 Feb; 146(6):064109. PubMed ID: 28201896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.
    Osad'ko IS; Shchukina AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and Controlling Entangled Two-Photon Absorption in Diatomic Molecules.
    Burdick RK; Varnavski O; Molina A; Upton L; Zimmerman P; Goodson T
    J Phys Chem A; 2018 Oct; 122(41):8198-8212. PubMed ID: 30223648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dynamics of zero-delay second order correlation function and spectral entanglement of two photons emitted from ladder-type atomic three-level systems.
    Ahn KJ
    Opt Express; 2020 Jan; 28(2):1790-1804. PubMed ID: 32121884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA.
    Lakowicz JR; Kuśba J; Shen Y; Malicka J; D'Auria S; Gryczynski Z; Gryczynski I
    J Fluoresc; 2003 Jan; 13(1):69-77. PubMed ID: 31588166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.
    Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B
    Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon photochromism of a diarylethene enhanced by Förster resonance energy transfer from two-photon absorbing fluorenes.
    Belfield KD; Bondar MV; Corredor CC; Hernandez FE; Przhonska OV; Yao S
    Chemphyschem; 2006 Dec; 7(12):2514-9. PubMed ID: 17099923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse-shaping based two-photon FRET stoichiometry.
    Flynn DC; Bhagwat AR; Brenner MH; Núñez MF; Mork BE; Cai D; Swanson JA; Ogilvie JP
    Opt Express; 2015 Feb; 23(3):3353-72. PubMed ID: 25836193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy.
    Hinze G; Métivier R; Nolde F; Müllen K; Basché T
    J Chem Phys; 2008 Mar; 128(12):124516. PubMed ID: 18376952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.