These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31117689)

  • 1. Ice Nucleation of Confined Monolayer Water Conforms to Classical Nucleation Theory.
    Qiao Z; Zhao Y; Gao YQ
    J Phys Chem Lett; 2019 Jun; 10(11):3115-3121. PubMed ID: 31117689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling.
    Reinhardt A; Doye JP
    J Chem Phys; 2013 Sep; 139(9):096102. PubMed ID: 24028134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-dependent diffusion coefficients and free energies for nucleation processes from Bayesian trajectory analysis.
    Innerbichler M; Menzl G; Dellago C
    Mol Phys; 2018; 116(21-22):2987-2997. PubMed ID: 30338318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid.
    Desgranges C; Delhommelle J
    Soft Matter; 2018 Jul; 14(29):5977-5985. PubMed ID: 29911716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters.
    Wang C; Wu J; Wang H; Zhang Z
    J Chem Phys; 2021 Jun; 154(23):234503. PubMed ID: 34241278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origins of homogeneous crystal nucleation.
    Yi P; Rutledge GC
    Annu Rev Chem Biomol Eng; 2012; 3():157-82. PubMed ID: 22468601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the critical nucleus size for ice formation with graphene oxide nanosheets.
    Bai G; Gao D; Liu Z; Zhou X; Wang J
    Nature; 2019 Dec; 576(7787):437-441. PubMed ID: 31853083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of polymers on the nucleating behavior of water in dilute supercooled solutions.
    Indra A; Bhendale M; Singh JK
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37493130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to the theory of homogeneous and heterogeneous nucleation.
    Ruckenstein E; Berim GO; Narsimhan G
    Adv Colloid Interface Sci; 2015 Jan; 215():13-27. PubMed ID: 25498347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of the solid-liquid interface free energy of Ni and Al from molecular dynamics simulation of nucleation.
    Sun Y; Zhang F; Song H; Mendelev MI; Wang CZ; Ho KM
    J Chem Phys; 2018 Nov; 149(17):174501. PubMed ID: 30408998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamic characteristics in monolayer square ice.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Jul; 147(4):044706. PubMed ID: 28764369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.