These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31117855)

  • 1. Characterization of bacterial nanocellulose produced by isolates from Philippine
    Gabriel Franco RA; Padalhin AR; Patrick Cuenca J; Ventura R; Montecillo A; Fernando L; Lee BT
    J Biomater Appl; 2019 Sep; 34(3):339-350. PubMed ID: 31117855
    [No Abstract]   [Full Text] [Related]  

  • 2. Preliminary studies on the in vivo performance of various kinds of nanocellulose for biomedical applications.
    Ho HV; Makkar P; Padalhin AR; Le TTT; Lee SY; Jaegyoung G; Lee BT
    J Biomater Appl; 2020 Feb; 34(7):942-951. PubMed ID: 31679436
    [No Abstract]   [Full Text] [Related]  

  • 3. Current advances of nanocellulose application in biomedical field.
    Leong MY; Kong YL; Harun MY; Looi CY; Wong WF
    Carbohydr Res; 2023 Oct; 532():108899. PubMed ID: 37478689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes.
    Stumpf TR; Pértile RA; Rambo CR; Porto LM
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4739-45. PubMed ID: 24094182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering.
    Osorio M; Ortiz I; Gañán P; Naranjo T; Zuluaga R; van Kooten TG; Castro C
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():697-705. PubMed ID: 30948106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.
    Niamsap T; Lam NT; Sukyai P
    Carbohydr Polym; 2019 Feb; 205():159-166. PubMed ID: 30446091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible bacterial cellulose membrane in dural defect repair of rat.
    Lima FM; Pinto FC; Andrade-da-Costa BL; Silva JG; Campos Júnior O; Aguiar JL
    J Mater Sci Mater Med; 2017 Mar; 28(3):37. PubMed ID: 28144849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose-Based Antibacterial Materials.
    Li J; Cha R; Mou K; Zhao X; Long K; Luo H; Zhou F; Jiang X
    Adv Healthc Mater; 2018 Oct; 7(20):e1800334. PubMed ID: 29923342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels.
    Silva CR; Babo PS; Mithieux S; Domingues RM; Reis R; Gomes ME; Weiss A
    J Biomater Appl; 2019 Oct; 34(4):560-572. PubMed ID: 31284811
    [No Abstract]   [Full Text] [Related]  

  • 11. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film.
    Chiaoprakobkij N; Seetabhawang S; Sanchavanakit N; Phisalaphong M
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):961-982. PubMed ID: 31043124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of nanocellulose and its potential in reinforced composites: A review.
    Wang J; Liu X; Jin T; He H; Liu L
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):919-946. PubMed ID: 31122154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing.
    Silva NHCS; Mota JP; Almeida TS; Carvalho JPF; Silvestre AJD; Vilela C; Rosado C; Freire CSR
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32070054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
    Rocha I; Lindh J; Hong J; Strømme M; Mihranyan A; Ferraz N
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29518966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose electroconductive composites.
    Shi Z; Phillips GO; Yang G
    Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo.
    Khan S; Ul-Islam M; Ikram M; Islam SU; Ullah MW; Israr M; Jang JH; Yoon S; Park JK
    Int J Biol Macromol; 2018 Oct; 117():1200-1210. PubMed ID: 29894790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ; Torres FG; Gomez CM; Bañó MC
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.