These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31118054)

  • 1. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C.
    Ben Zouari Y; Molitor AM; Sikorska N; Pancaldi V; Sexton T
    Genome Biol; 2019 May; 20(1):102. PubMed ID: 31118054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.
    Cairns J; Freire-Pritchett P; Wingett SW; Várnai C; Dimond A; Plagnol V; Zerbino D; Schoenfelder S; Javierre BM; Osborne C; Fraser P; Spivakov M
    Genome Biol; 2016 Jun; 17(1):127. PubMed ID: 27306882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops.
    Tang L; Liao J; Hill MC; Hu J; Zhao Y; Ellinor PT; Li M
    Nucleic Acids Res; 2024 Mar; 52(5):e25. PubMed ID: 38281134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.
    Lazaris C; Kelly S; Ntziachristos P; Aifantis I; Tsirigos A
    BMC Genomics; 2017 Jan; 18(1):22. PubMed ID: 28056762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
    Lun AT; Smyth GK
    BMC Bioinformatics; 2015 Aug; 16():258. PubMed ID: 26283514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization.
    Wolff J; Rabbani L; Gilsbach R; Richard G; Manke T; Backofen R; Grüning BA
    Nucleic Acids Res; 2020 Jul; 48(W1):W177-W184. PubMed ID: 32301980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. R Tutorial: Detection of Differentially Interacting Chromatin Regions From Multiple Hi-C Datasets.
    Stansfield JC; Tran D; Nguyen T; Dozmorov MG
    Curr Protoc Bioinformatics; 2019 Jun; 66(1):e76. PubMed ID: 31125519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies.
    Zheng Y; Ay F; Keles S
    Elife; 2019 Jan; 8():. PubMed ID: 30702424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coolpup.py: versatile pile-up analysis of Hi-C data.
    Flyamer IM; Illingworth RS; Bickmore WA
    Bioinformatics; 2020 May; 36(10):2980-2985. PubMed ID: 32003791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cut-C: cleavage under tethered nuclease for conformational capture.
    Shimbo T; Kawamura M; Wijaya E; Takaki E; Kaneda Y; Tamai K
    BMC Genomics; 2019 Jul; 20(1):614. PubMed ID: 31357933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops.
    Zhou Y; Cheng X; Yang Y; Li T; Li J; Huang TH; Wang J; Lin S; Jin VX
    Genome Med; 2020 Aug; 12(1):69. PubMed ID: 32787954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Software tools for visualizing Hi-C data.
    Yardımcı GG; Noble WS
    Genome Biol; 2017 Feb; 18(1):26. PubMed ID: 28159004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine mapping chromatin contacts in capture Hi-C data.
    Eijsbouts CQ; Burren OS; Newcombe PJ; Wallace C
    BMC Genomics; 2019 Jan; 20(1):77. PubMed ID: 30674271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Evaluation of Statistical Methods for Identifying Looping Interactions in 5C Data.
    Gilgenast TG; Phillips-Cremins JE
    Cell Syst; 2019 Mar; 8(3):197-211.e13. PubMed ID: 30904376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
    Wang F; Alinejad-Rokny H; Lin J; Gao T; Chen X; Zheng Z; Meng L; Li X; Wong KC
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303502. PubMed ID: 37816141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HiCUP: pipeline for mapping and processing Hi-C data.
    Wingett S; Ewels P; Furlan-Magaril M; Nagano T; Schoenfelder S; Fraser P; Andrews S
    F1000Res; 2015; 4():1310. PubMed ID: 26835000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guiding the design of well-powered Hi-C experiments to detect differential loops.
    Parker SM; Davis ES; Phanstiel DH
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding the design of well-powered Hi-C experiments to detect differential loops.
    Parker SM; Davis ES; Phanstiel DH
    Bioinform Adv; 2023; 3(1):vbad152. PubMed ID: 38023330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting Assessment of Computational Methods for Hi-C Data Analysis.
    Yang J; Zhu X; Wang R; Li M; Tang Q
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.