These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31118067)

  • 1. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases.
    Zheng Y; Peng H; Zhang X; Zhao Z; Yin J; Li J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):517. PubMed ID: 30598065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting adverse drug reactions through interpretable deep learning framework.
    Dey S; Luo H; Fokoue A; Hu J; Zhang P
    BMC Bioinformatics; 2018 Dec; 19(Suppl 21):476. PubMed ID: 30591036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology.
    Ietswaart R; Arat S; Chen AX; Farahmand S; Kim B; DuMouchel W; Armstrong D; Fekete A; Sutherland JJ; Urban L
    EBioMedicine; 2020 Jul; 57():102837. PubMed ID: 32565027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction.
    Dudas B; Miteva MA
    Trends Pharmacol Sci; 2024 Jan; 45(1):39-55. PubMed ID: 38072723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying drug interactions using machine learning.
    Demirsoy I; Karaibrahimoglu A
    Adv Clin Exp Med; 2023 Aug; 32(8):829-838. PubMed ID: 37589227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs.
    Li S; Zhang L; Wang L; Ji J; He J; Zheng X; Cao L; Li K
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarkers of adverse drug reactions.
    Carr DF; Pirmohamed M
    Exp Biol Med (Maywood); 2018 Feb; 243(3):291-299. PubMed ID: 28950720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FetoML: Interpretable predictions of the fetotoxicity of drugs based on machine learning approaches.
    Jeong M; Yoo S
    Mol Inform; 2024 Jun; 43(6):e202300312. PubMed ID: 38850133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Drug Risk Using GAN and SMOTE Based on CFDA's Spontaneous Reporting Data.
    Wei J; Feng G; Lu Z; Han P; Zhu Y; Huang W
    J Healthc Eng; 2021; 2021():6033860. PubMed ID: 34493954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of adverse drug reactions based on knowledge graph embedding.
    Zhang F; Sun B; Diao X; Zhao W; Shu T
    BMC Med Inform Decis Mak; 2021 Feb; 21(1):38. PubMed ID: 33541342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Addition of Information Regarding Clinically Significant Adverse Drug Reactions to Japanese Drug Package Inserts Using a Machine-Learning Model.
    Watanabe T; Ambe K; Tohkin M
    Ther Innov Regul Sci; 2024 Mar; 58(2):357-367. PubMed ID: 38135862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DAPredict: a database for drug action phenotype prediction.
    Meng Q; Cai Y; Zhou K; Xu F; Huo D; Xie H; Yu M; Zhang D; Chen X
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38242684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning prediction of side effects for drugs in clinical trials.
    Galeano D; Paccanaro A
    Cell Rep Methods; 2022 Dec; 2(12):100358. PubMed ID: 36590692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review.
    Shin HK; Huang R; Chen M
    Food Chem Toxicol; 2023 Sep; 179():113948. PubMed ID: 37460037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of cytochrome P450-mediated bioactivation using machine learning models and in vitro validation.
    Hu XM; Hou YY; Teng XR; Liu Y; Li Y; Li W; Li Y; Ai CZ
    Arch Toxicol; 2024 May; 98(5):1457-1467. PubMed ID: 38492097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records.
    Bean DM; Wu H; Iqbal E; Dzahini O; Ibrahim ZM; Broadbent M; Stewart R; Dobson RJB
    Sci Rep; 2017 Nov; 7(1):16416. PubMed ID: 29180758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of adverse drug reactions due to genetic predisposition using deep neural networks.
    Dafniet B; Taboureau O
    Mol Inform; 2024 Jun; 43(6):e202400021. PubMed ID: 38850150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review.
    Toni E; Ayatollahi H; Abbaszadeh R; Fotuhi Siahpirani A
    Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation.
    Lin J; He Y; Ru C; Long W; Li M; Wen Z
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.