These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31118067)

  • 21. Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning.
    Choudhury O; Park Y; Salonidis T; Gkoulalas-Divanis A; Sylla I; Das AK
    AMIA Annu Symp Proc; 2019; 2019():313-322. PubMed ID: 32308824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model.
    Xue R; Liao J; Shao X; Han K; Long J; Shao L; Ai N; Fan X
    Chem Res Toxicol; 2020 Jan; 33(1):202-210. PubMed ID: 31777246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Survey on Computational Approaches to Predicting Adverse Drug Reactions.
    Chen YG; Wang YY; Zhao XM
    Curr Top Med Chem; 2016; 16(30):3629-3635. PubMed ID: 27334199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring drug safety in Astrakhan, Russia.
    Kirilochev OO; Dorfman IP; Umerova AR
    Int J Risk Saf Med; 2015; 27 Suppl 1():S33-4. PubMed ID: 26639700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast Identification of Adverse Drug Reactions (ADRs) of Digestive and Nervous Systems of Organic Drugs by In Silico Models.
    Chen M; Yang Z; Gao Y; Li C
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33578679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting adverse drug reactions through interpretable deep learning framework.
    Dey S; Luo H; Fokoue A; Hu J; Zhang P
    BMC Bioinformatics; 2018 Dec; 19(Suppl 21):476. PubMed ID: 30591036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico assessment of adverse drug reactions and associated mechanisms.
    Ivanov SM; Lagunin AA; Poroikov VV
    Drug Discov Today; 2016 Jan; 21(1):58-71. PubMed ID: 26272036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting serious rare adverse reactions of novel chemicals.
    Poleksic A; Xie L
    Bioinformatics; 2018 Aug; 34(16):2835-2842. PubMed ID: 29617731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of adverse drug reactions using decision tree modeling.
    Hammann F; Gutmann H; Vogt N; Helma C; Drewe J
    Clin Pharmacol Ther; 2010 Jul; 88(1):52-9. PubMed ID: 20220749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic analysis of the associations between adverse drug reactions and pathways.
    Chen X; Wang Y; Wang P; Lian B; Li C; Wang J; Li X; Jiang W
    Biomed Res Int; 2015; 2015():670949. PubMed ID: 26495310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Adverse Drug Reaction Linked to Protein Targets Using Network-Based Information and Machine Learning.
    Galletti C; Aguirre-Plans J; Oliva B; Fernandez-Fuentes N
    Front Bioinform; 2022; 2():906644. PubMed ID: 36304303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of Machine Learning Methods in Drug Toxicity Prediction.
    Zhang L; Zhang H; Ai H; Hu H; Li S; Zhao J; Liu H
    Curr Top Med Chem; 2018; 18(12):987-997. PubMed ID: 30051792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using constrained information entropy to detect rare adverse drug reactions from medical forums.
    Yi Zheng ; Chaowang Lan ; Hui Peng ; Jinyan Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2460-2463. PubMed ID: 28268822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale identification of adverse drug reaction-related proteins through a random walk model.
    Chen X; Shi H; Yang F; Yang L; Lv Y; Wang S; Dai E; Sun D; Jiang W
    Sci Rep; 2016 Nov; 6():36325. PubMed ID: 27805066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology.
    Ietswaart R; Arat S; Chen AX; Farahmand S; Kim B; DuMouchel W; Armstrong D; Fekete A; Sutherland JJ; Urban L
    EBioMedicine; 2020 Jul; 57():102837. PubMed ID: 32565027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.