BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31118069)

  • 1. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors.
    Zhang M; Zhou C; Wei Y; Xu C; Pan H; Ying W; Sun Y; Sun Y; Xiao Q; Yao N; Zhong W; Li Y; Wu K; Yuan G; Mitalipov S; Chen ZJ; Yang H
    Genome Biol; 2019 May; 20(1):101. PubMed ID: 31118069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex precise base editing in cynomolgus monkeys.
    Zhang W; Aida T; Del Rosario RCH; Wilde JJ; Ding C; Zhang X; Baloch Z; Huang Y; Tang Y; Li D; Lu H; Zhou Y; Jiang M; Xu D; Fang Z; Zheng Z; Huang Q; Feng G; Yang S
    Nat Commun; 2020 May; 11(1):2325. PubMed ID: 32393762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient RNA-guided base editing in mouse embryos.
    Kim K; Ryu SM; Kim ST; Baek G; Kim D; Lim K; Chung E; Kim S; Kim JS
    Nat Biotechnol; 2017 May; 35(5):435-437. PubMed ID: 28244995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A new milestone in human embryo editing].
    Jordan B
    Med Sci (Paris); 2017 May; 33(5):549-554. PubMed ID: 28612733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of β-thalassemia mutant by base editor in human embryos.
    Liang P; Ding C; Sun H; Xie X; Xu Y; Zhang X; Sun Y; Xiong Y; Ma W; Liu Y; Wang Y; Fang J; Liu D; Songyang Z; Zhou C; Huang J
    Protein Cell; 2017 Nov; 8(11):811-822. PubMed ID: 28942539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-nucleotide editing: From principle, optimization to application.
    Tang J; Lee T; Sun T
    Hum Mutat; 2019 Dec; 40(12):2171-2183. PubMed ID: 31131955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.
    Zuo E; Sun Y; Wei W; Yuan T; Ying W; Sun H; Yuan L; Steinmetz LM; Li Y; Yang H
    Science; 2019 Apr; 364(6437):289-292. PubMed ID: 30819928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of a pathogenic gene mutation in human embryos.
    Ma H; Marti-Gutierrez N; Park SW; Wu J; Lee Y; Suzuki K; Koski A; Ji D; Hayama T; Ahmed R; Darby H; Van Dyken C; Li Y; Kang E; Park AR; Kim D; Kim ST; Gong J; Gu Y; Xu X; Battaglia D; Krieg SA; Lee DM; Wu DH; Wolf DP; Heitner SB; Belmonte JCI; Amato P; Kim JS; Kaul S; Mitalipov S
    Nature; 2017 Aug; 548(7668):413-419. PubMed ID: 28783728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos.
    Zeng Y; Li J; Li G; Huang S; Yu W; Zhang Y; Chen D; Chen J; Liu J; Huang X
    Mol Ther; 2018 Nov; 26(11):2631-2637. PubMed ID: 30166242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise A•T to G•C base editing in the zebrafish genome.
    Qin W; Lu X; Liu Y; Bai H; Li S; Lin S
    BMC Biol; 2018 Nov; 16(1):139. PubMed ID: 30458760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous targeting of linked loci in mouse embryos using base editing.
    Lee HK; Willi M; Smith HE; Miller SM; Liu DR; Liu C; Hennighausen L
    Sci Rep; 2019 Feb; 9(1):1662. PubMed ID: 30733567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genome editing in human embryos: ethical concerns and practical applications].
    Akutsu H
    Rinsho Ketsueki; 2019; 60(9):1033-1045. PubMed ID: 31597825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient and precise base editing in discarded human tripronuclear embryos.
    Li G; Liu Y; Zeng Y; Li J; Wang L; Yang G; Chen D; Shang X; Chen J; Huang X; Liu J
    Protein Cell; 2017 Oct; 8(10):776-779. PubMed ID: 28825190
    [No Abstract]   [Full Text] [Related]  

  • 17. CRISPR-Mediated Base Editing: Promises and Challenges for a Viable Oncotherapy Strategy.
    Huang L; Yang C; Chen Y; Deng H; Liao Z; Xiao H
    Hum Gene Ther; 2023 Aug; 34(15-16):669-681. PubMed ID: 37276175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of base editors and prime editors advances precision genome engineering in plants.
    Hua K; Han P; Zhu JK
    Plant Physiol; 2022 Mar; 188(4):1795-1810. PubMed ID: 34962995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing.
    Rabinowitz R; Abadi S; Almog S; Offen D
    Nucleic Acids Res; 2020 Jul; 48(W1):W340-W347. PubMed ID: 32255179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation.
    Chu SH; Packer M; Rees H; Lam D; Yu Y; Marshall J; Cheng LI; Lam D; Olins J; Ran FA; Liquori A; Gantzer B; Decker J; Born D; Barrera L; Hartigan A; Gaudelli N; Ciaramella G; Slaymaker IM
    CRISPR J; 2021 Apr; 4(2):169-177. PubMed ID: 33876959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.