BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3111826)

  • 1. [Relations between the cortical DC potentials and the K+ concentration of the blood and cerebral cortex extracellular space in reversible asphyxia].
    Staschen CM; Lehmenkühler A; Zidek W; Caspers H
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1987 Jun; 18(2):53-7. PubMed ID: 3111826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the physiological response of the cerebral cortex to acute stress (reversible asphyxia).
    Bito LZ; Myers RE
    J Physiol; 1972 Mar; 221(2):349-70. PubMed ID: 4623204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.
    Ohta K; Graf R; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1170-81. PubMed ID: 9390649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil.
    Yamaguchi T
    Bull Tokyo Med Dent Univ; 1986 Mar; 33(1):1-8. PubMed ID: 3457643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes of extracellular potassium concentration in the cortex and brain stem during the acute phase of experimental closed head injury (author's transl)].
    Takahashi H; Manaka S; Sano K
    No To Shinkei; 1981 Apr; 33(4):365-76. PubMed ID: 7196250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion.
    Sick TJ; Feng ZC; Rosenthal M
    J Cereb Blood Flow Metab; 1998 Oct; 18(10):1114-20. PubMed ID: 9778188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the potassium ion concentration in the extracellular space of rat cerebral cortex during the arousal reaction.
    Melnikovová H
    Physiol Bohemoslov; 1978; 27(2):131-8. PubMed ID: 149315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in the concentration of extracellular potassium in the cerebral cortex with different parameters of electrical stimulation].
    Roĭtbak AI; Ocherashvili IV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Feb; 73(2):277-83. PubMed ID: 3569598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transcapillary water filtration in the presence of an increase in intravascular pressure as a factor in the development of brain edema].
    Mchedlishvili GI; Nikolaĭshvili LS; Itkis ML
    Zh Vopr Neirokhir Im N N Burdenko; 1978; (4):15-9. PubMed ID: 696121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression.
    Lian XY; Stringer JL
    Brain Res; 2004 Jun; 1012(1-2):177-84. PubMed ID: 15158175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic action on cortical glial cells in vivo.
    Seigneur J; Kroeger D; Nita DA; Amzica F
    Cereb Cortex; 2006 May; 16(5):655-68. PubMed ID: 16093563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The modifications of the cortical steady potential during respiratory arrest].
    Speckmann EJ; Caspers H
    Rev Neurol (Paris); 1967 Jul; 117(1):5-19. PubMed ID: 6063880
    [No Abstract]   [Full Text] [Related]  

  • 15. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Direct current shifts of the cerebral cortex in asphyxia].
    Caspers H; Speckmann EJ
    Arztl Forsch; 1971 Aug; 25(8):241-55. PubMed ID: 5109319
    [No Abstract]   [Full Text] [Related]  

  • 17. Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO.
    Windmüller O; Lindauer U; Foddis M; Einhäupl KM; Dirnagl U; Heinemann U; Dreier JP
    Brain; 2005 Sep; 128(Pt 9):2042-51. PubMed ID: 15901647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of extracellular potassium in central respiratory control studied in the isolated brainstem-spinal cord preparation of the neonatal rat.
    Okada Y; Kuwana S; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol Neurobiol; 2005 Mar; 146(1):21-32. PubMed ID: 15733776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space.
    Dreier JP; Körner K; Ebert N; Görner A; Rubin I; Back T; Lindauer U; Wolf T; Villringer A; Einhäupl KM; Lauritzen M; Dirnagl U
    J Cereb Blood Flow Metab; 1998 Sep; 18(9):978-90. PubMed ID: 9740101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression.
    Hansen AJ; Quistorff B; Gjedde A
    Acta Physiol Scand; 1980 May; 109(1):1-6. PubMed ID: 7446156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.