These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3111865)

  • 1. Mechanisms of arachidonic acid-induced contractions of canine cerebral arteries.
    Jancar S; Schulz R; Krueger C; Cook DA
    Eur J Pharmacol; 1987 Apr; 136(3):345-52. PubMed ID: 3111865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium-derived metabolites of arachidonic acid in enhanced pulmonary artery contractions in female rabbits.
    Pfister SL; Campbell WB
    Hypertension; 1996 Jan; 27(1):43-8. PubMed ID: 8591886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 15-lipoxygenase metabolites of arachidonic acid evoke contractions and relaxations in isolated canine arteries: role of thromboxane receptors, endothelial cells and cyclooxygenase.
    Van Diest MJ; Verbeuren TJ; Herman AG
    J Pharmacol Exp Ther; 1991 Jan; 256(1):194-203. PubMed ID: 1824864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some effects of leukotriene D4 on the mechanical properties of the guinea-pig basilar artery.
    Nishiye E; Itoh T; Kuriyama H
    Br J Pharmacol; 1988 Mar; 93(3):591-600. PubMed ID: 3259445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein.
    Rimele TJ; Vanhoutte PM
    J Pharmacol Exp Ther; 1983 Jun; 225(3):720-8. PubMed ID: 6408242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase.
    Miller VM; Vanhoutte PM
    Am J Physiol; 1985 Apr; 248(4 Pt 2):H432-7. PubMed ID: 3920919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    Stroke; 1988 Apr; 19(4):476-9. PubMed ID: 3129826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible role of leukotrienes in hypoxic contraction of canine isolated basilar artery.
    Gu M; Elliott DA; Ong BY; Bose D
    Br J Pharmacol; 1991 Jul; 103(3):1629-32. PubMed ID: 1933128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclo-oxygenase blockers influence the effects of 15-lipoxygenase metabolites of arachidonic acid in isolated canine blood vessels.
    Van Diest MJ; Verbeuren TJ; Herman AG
    Prostaglandins; 1986 Jul; 32(1):97-100. PubMed ID: 3094100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The platelet-independent release of thromboxane A2 by Paf-acether from guinea-pig lungs involves mechanisms distinct from those for leukotriene.
    Lefort J; Rotilio D; Vargaftig BB
    Br J Pharmacol; 1984 Jul; 82(3):565-75. PubMed ID: 6430375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and post-junctional actions of prostaglandin I2, carbocyclic thromboxane A2 and leukotriene C4 in dog tracheal tissue.
    Inoue T; Ito Y
    Br J Pharmacol; 1985 Feb; 84(2):289-98. PubMed ID: 2983807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral arteries can generate 5- and 15-hydroxyeicosatetraenoic acid from arachidonic acid.
    Schulz R; Jancar S; Cook DA
    Can J Physiol Pharmacol; 1990 Jul; 68(7):807-13. PubMed ID: 2116936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries.
    Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):81-6. PubMed ID: 3930700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible mechanisms of 15-hydroperoxyarachidonic acid-induced contraction of the canine basilar artery in vitro.
    Koide T; Neichi T; Takato M; Matsushita H; Sugioka K; Nakano M; Hata S
    J Pharmacol Exp Ther; 1982 May; 221(2):481-8. PubMed ID: 6804622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatostatin-induced contraction mediated by endothelial TXA2 production in canine cerebral arteries.
    Shirahase H; Kanda M; Shimaji H; Usui H; Rorstad OP; Kurahashi K
    Life Sci; 1993; 53(20):1539-44. PubMed ID: 8105357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukotriene biosynthesis by canine and human coronary arteries.
    Piomelli D; Feinmark SJ; Cannon PJ
    J Pharmacol Exp Ther; 1987 Jun; 241(3):763-70. PubMed ID: 3598901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An endothelium-dependent contraction in canine mesenteric artery caused by caffeine.
    Jino H; Usui H; Temma S; Shirahase H; Kurahashi K
    Br J Pharmacol; 1994 Feb; 111(2):435-8. PubMed ID: 8004388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S97-101. PubMed ID: 2433536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoxygenase and calcium entry in vascular smooth muscle.
    Vanhoutte PM; Rimele TJ; Flavahan NA
    J Cardiovasc Pharmacol; 1985; 7 Suppl 6():S47-52. PubMed ID: 2414595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of lymphatic vessel contractility with inhibitors of arachidonic acid metabolism.
    Johnston MG; Feuer C
    J Pharmacol Exp Ther; 1983 Aug; 226(2):603-7. PubMed ID: 6410049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.