BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3111877)

  • 1. Ultrastructural analysis of the anti-chlamydial activity of recombinant murine interferon-gamma.
    de la Maza LM; Plunkett MJ; Carlson EJ; Peterson EM; Czarniecki CW
    Exp Mol Pathol; 1987 Aug; 47(1):13-25. PubMed ID: 3111877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of growth of Chlamydia trachomatis by human gamma interferon.
    Shemer Y; Sarov I
    Infect Immun; 1985 May; 48(2):592-6. PubMed ID: 2985506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural analysis of the growth cycle of Chlamydia trachomatis in mouse cells treated with recombinant human alpha-interferons.
    de la Maza LM; Goebel JM; Czarniecki CW; Peterson EM
    Exp Mol Pathol; 1984 Oct; 41(2):227-35. PubMed ID: 6479293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anti-chlamydial and anti-proliferative activities of recombinant murine interferon-gamma are not dependent on tryptophan concentrations.
    de la Maza LM; Peterson EM; Fennie CW; Czarniecki CW
    J Immunol; 1985 Dec; 135(6):4198-200. PubMed ID: 3934279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B.
    Stirling P; Richmond S
    J Gen Microbiol; 1977 May; 100(1):31-42. PubMed ID: 195005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; Gérard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.
    Rahman MA; Azuma Y; Fukunaga H; Murakami T; Sugi K; Fukushi H; Miura K; Suzuki H; Shirai M
    J Antimicrob Chemother; 2005 Nov; 56(5):861-8. PubMed ID: 16172105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13.
    Clark RB; Schatzki PF; Dalton HP
    Arch Microbiol; 1982 Dec; 133(4):278-82. PubMed ID: 7171287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of persistent infection by Chlamydia trachomatis serovar K in TPA-differentiated U937 cells and the role of IFN-gamma.
    Nettelnbreker E; Zeidler H; Bartels H; Dreses-Werringloer U; Däubener W; Holtmann H; Köhler L
    J Med Microbiol; 1998 Feb; 47(2):141-9. PubMed ID: 9879957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivation of persistent Chlamydia trachomatis infection in cell culture.
    Beatty WL; Morrison RP; Byrne GI
    Infect Immun; 1995 Jan; 63(1):199-205. PubMed ID: 7806358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma interferon-induced nitric oxide production reduces Chlamydia trachomatis infectivity in McCoy cells.
    Mayer J; Woods ML; Vavrin Z; Hibbs JB
    Infect Immun; 1993 Feb; 61(2):491-7. PubMed ID: 8423078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon.
    Morrison RP
    Infect Immun; 2000 Oct; 68(10):6038-40. PubMed ID: 10992517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interferon on the growth of Chlamydia trachomatis in mouse fibroblasts (L cells).
    Rothermel CD; Byrne GI; Havell EA
    Infect Immun; 1983 Jan; 39(1):362-70. PubMed ID: 6185434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant murine gamma interferon inhibits Chlamydia trachomatis serovar L1 in vivo.
    Zhong GM; Peterson EM; Czarniecki CW; de la Maza LM
    Infect Immun; 1988 Jan; 56(1):283-6. PubMed ID: 3121513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro.
    Beatty WL; Byrne GI; Morrison RP
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3998-4002. PubMed ID: 8387206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads.
    Wyrick PB; Gerbig DG; Knight ST; Raulston JE
    Microb Pathog; 1996 Jan; 20(1):31-40. PubMed ID: 8692008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-cultivation of conjunctival epithelial cells and Chlamydia trachomatis: electron microscopic findings.
    Kim DS; Ko MK; Kang KT
    Korean J Ophthalmol; 1998 Jun; 12(1):1-5. PubMed ID: 9753944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 19. Ultrastructural effect of penicillin and cycloheximide on Chlamydia trachomatis strain HAR-13.
    Clark RB; Schatzki PF; Dalton HP
    Med Microbiol Immunol; 1982; 171(3):151-9. PubMed ID: 7162456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of growth of Chlamydia trachomatis by the calcium antagonist verapamil.
    Shainkin-Kestenbaum R; Winikoff Y; Kol R; Chaimovitz C; Sarov I
    J Gen Microbiol; 1989 Jun; 135(6):1619-23. PubMed ID: 2559152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.