These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3111877)

  • 41. Immunoelectron microscopic localization of chlamydial lipopolysaccharide (LPS) in McCoy cells inoculated with Chlamydia trachomatis.
    Hearn SA; McNabb GL
    J Histochem Cytochem; 1991 Aug; 39(8):1067-75. PubMed ID: 1649854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative Protein Profiling of Chlamydia trachomatis Growth Forms Reveals Defense Strategies Against Tryptophan Starvation.
    Østergaard O; Follmann F; Olsen AW; Heegaard NH; Andersen P; Rosenkrands I
    Mol Cell Proteomics; 2016 Dec; 15(12):3540-3550. PubMed ID: 27784728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR.
    Chi EY; Kuo CC; Grayston JT
    J Bacteriol; 1987 Aug; 169(8):3757-63. PubMed ID: 3611029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro growth of Chlamydia trachomatis in conjunctival and corneal epithelium.
    Patton DL; Chan KY; Kuo CC; Cosgrove YT; Langley L
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1087-95. PubMed ID: 2843480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of 6-thioguanine on Chlamydia trachomatis growth in wild-type and hypoxanthine-guanine phosphoribosyltransferase-deficient cells.
    Qin B; McClarty G
    J Bacteriol; 1992 May; 174(9):2865-73. PubMed ID: 1569017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversibility of heat shock in Chlamydia trachomatis.
    Kahane S; Friedman MG
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):25-30. PubMed ID: 1330821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrastructural observations on the entry of Chlamydia trachomatis into human spermatozoa.
    Erbengi T
    Hum Reprod; 1993 Mar; 8(3):416-21. PubMed ID: 8473459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro activity of nonoxynol-9 on McCoy cells infected with Chlamydia trachomatis.
    Knight ST; Lee SH; Davis CH; Moorman DR; Hodinka RL; Wyrick PB
    Sex Transm Dis; 1987; 14(3):165-73. PubMed ID: 2821637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis.
    Lee JK; Enciso GA; Boassa D; Chander CN; Lou TH; Pairawan SS; Guo MC; Wan FYM; Ellisman MH; Sütterlin C; Tan M
    Nat Commun; 2018 Jan; 9(1):45. PubMed ID: 29298975
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An in vitro model of azithromycin-induced persistent Chlamydia trachomatis infection.
    Xue Y; Zheng H; Mai Z; Qin X; Chen W; Huang T; Chen D; Zheng L
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide production: a mechanism of Chlamydia trachomatis inhibition in interferon-gamma-treated RAW264.7 cells.
    Chen B; Stout R; Campbell WF
    FEMS Immunol Med Microbiol; 1996 Jun; 14(2-3):109-20. PubMed ID: 8809546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human guanylate binding proteins potentiate the anti-chlamydia effects of interferon-gamma.
    Tietzel I; El-Haibi C; Carabeo RA
    PLoS One; 2009 Aug; 4(8):e6499. PubMed ID: 19652711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Ultrastructural analysis of the effect of antimicrobial drugs on the development of Chlamydia trachomatis in cells cultured in vitro].
    Falcieri E; Cevenini R; Landini MP; Donati M
    Boll Ist Sieroter Milan; 1980 Jan; 58(6):478-87. PubMed ID: 6160865
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins.
    Al-Zeer MA; Al-Younes HM; Lauster D; Abu Lubad M; Meyer TF
    Autophagy; 2013 Jan; 9(1):50-62. PubMed ID: 23086406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immune regulation of the L5178Y murine tumor-dormant state. II. Interferon-gamma requires tumor necrosis factor to restrain tumor cell growth in peritoneal cell cultures from tumor-dormant mice.
    Suzuki Y; Liu CM; Chen LP; Ben-Nathan D; Wheelock EF
    J Immunol; 1987 Nov; 139(9):3146-52. PubMed ID: 3117888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of penicillin on Chlamydia trachomatis DNA replication.
    Lambden PR; Pickett MA; Clarke IN
    Microbiology (Reading); 2006 Sep; 152(Pt 9):2573-2578. PubMed ID: 16946252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chlamydia trachomatis in routine cervical smears. A microscopic and ultrastructural analysis.
    Henry MR; de Mesy Jensen KL; Skoglund CD; Armstrong DW
    Acta Cytol; 1993; 37(3):343-52. PubMed ID: 8388608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of secondary inclusions in cells infected by Chlamydia trachomatis.
    Suchland RJ; Rockey DD; Weeks SK; Alzhanov DT; Stamm WE
    Infect Immun; 2005 Jul; 73(7):3954-62. PubMed ID: 15972482
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resveratrol Inhibits Propagation of
    Petyaev IM; Zigangirova NA; Morgunova EY; Kyle NH; Fedina ED; Bashmakov YK
    Biomed Res Int; 2017; 2017():4064071. PubMed ID: 29318147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.