BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31119088)

  • 1. Optimizing
    Roux S; Trubl G; Goudeau D; Nath N; Couradeau E; Ahlgren NA; Zhan Y; Marsan D; Chen F; Fuhrman JA; Northen TR; Sullivan MB; Rich VI; Malmstrom RR; Eloe-Fadrosh EA
    PeerJ; 2019; 7():e6902. PubMed ID: 31119088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deduplication Improves Cost-Efficiency and Yields of
    Zhang Z; Zhang L; Zhang G; Zhao Z; Wang H; Ju F
    Microbiol Spectr; 2023 Feb; 11(2):e0428222. PubMed ID: 36744896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating
    Vosloo S; Huo L; Anderson CL; Dai Z; Sevillano M; Pinto A
    Microbiol Spectr; 2021 Dec; 9(3):e0143421. PubMed ID: 34730411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature.
    Zablocki O; Michelsen M; Burris M; Solonenko N; Warwick-Dugdale J; Ghosh R; Pett-Ridge J; Sullivan MB; Temperton B
    PeerJ; 2021; 9():e11088. PubMed ID: 33850654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking viromics: an
    Roux S; Emerson JB; Eloe-Fadrosh EA; Sullivan MB
    PeerJ; 2017; 5():e3817. PubMed ID: 28948103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes.
    White RA; Bottos EM; Roy Chowdhury T; Zucker JD; Brislawn CJ; Nicora CD; Fansler SJ; Glaesemann KR; Glass K; Jansson JK
    mSystems; 2016; 1(3):. PubMed ID: 27822530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction.
    Simon SA; Schmidt K; Griesdorn L; Soares AR; Bornemann TLV; Probst AJ
    BMC Genomics; 2023 Dec; 24(1):727. PubMed ID: 38041056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes.
    Papudeshi B; Haggerty JM; Doane M; Morris MM; Walsh K; Beattie DT; Pande D; Zaeri P; Silva GGZ; Thompson F; Edwards RA; Dinsdale EA
    BMC Genomics; 2017 Nov; 18(1):915. PubMed ID: 29183281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes.
    Patin NV; Goodwin KD
    mSystems; 2022 Dec; 7(6):e0059522. PubMed ID: 36448813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIGMAC : breaking inaccurate genomes and merging assembled contigs for long read metagenomic assembly.
    Lam KK; Hall R; Clum A; Rao S
    BMC Bioinformatics; 2016 Oct; 17(1):435. PubMed ID: 27793084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Read Metagenomics Improves the Recovery of Viral Diversity from Complex Natural Marine Samples.
    Zaragoza-Solas A; Haro-Moreno JM; Rodriguez-Valera F; López-Pérez M
    mSystems; 2022 Jun; 7(3):e0019222. PubMed ID: 35695508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data.
    Deng Z; Delwart E
    BMC Bioinformatics; 2021 Mar; 22(1):119. PubMed ID: 33706720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses.
    Parras-Moltó M; Rodríguez-Galet A; Suárez-Rodríguez P; López-Bueno A
    Microbiome; 2018 Jun; 6(1):119. PubMed ID: 29954453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive investigation of metagenome assembly by linked-read sequencing.
    Zhang L; Fang X; Liao H; Zhang Z; Zhou X; Han L; Chen Y; Qiu Q; Li SC
    Microbiome; 2020 Nov; 8(1):156. PubMed ID: 33176883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new strategy for better genome assembly from very short reads.
    Ji Y; Shi Y; Ding G; Li Y
    BMC Bioinformatics; 2011 Dec; 12():493. PubMed ID: 22208765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of viral genomes from metagenomes.
    Smits SL; Bodewes R; Ruiz-Gonzalez A; Baumgärtner W; Koopmans MP; Osterhaus AD; Schürch AC
    Front Microbiol; 2014; 5():714. PubMed ID: 25566226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.