BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31119351)

  • 1. The substrate specificity of aniline dioxygenase is mainly determined by two of its components: glutamine synthetase-like enzyme and oxygenase.
    Ji J; Zhang J; Liu Y; Zhang Y; Liu Y; Yan X
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6333-6344. PubMed ID: 31119351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide.
    Takeo M; Ohara A; Sakae S; Okamoto Y; Kitamura C; Kato D; Negoro S
    J Bacteriol; 2013 Oct; 195(19):4406-14. PubMed ID: 23893114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.
    Ang EL; Obbard JP; Zhao H
    FEBS J; 2007 Feb; 274(4):928-39. PubMed ID: 17269935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene.
    Keenan BG; Wood TK
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):827-38. PubMed ID: 16933133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of aniline dioxygenase for enhanced bioremediation of aromatic amines.
    Ang EL; Obbard JP; Zhao H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1063-70. PubMed ID: 18813921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of active-site residues in naphthalene dioxygenase.
    Parales RE
    J Ind Microbiol Biotechnol; 2003 May; 30(5):271-8. PubMed ID: 12695887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3.
    Liu Z; Yang H; Huang Z; Zhou P; Liu SJ
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):679-82. PubMed ID: 11956754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and activity of PA5508, a hexameric glutamine synthetase homologue.
    Ladner JE; Atanasova V; Dolezelova Z; Parsons JF
    Biochemistry; 2012 Dec; 51(51):10121-3. PubMed ID: 23234431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway.
    Zeyer J; Wasserfallen A; Timmis KN
    Appl Environ Microbiol; 1985 Aug; 50(2):447-53. PubMed ID: 4051488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Episodic positive selection during the evolution of naphthalene dioxygenase to nitroarene dioxygenase.
    Dutta A; Chakraborty J; Dutta TK
    Biochem Biophys Res Commun; 2013 Oct; 440(1):68-75. PubMed ID: 24041690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3.
    Zhang T; Zhang J; Liu S; Liu Z
    J Environ Sci (China); 2008; 20(6):717-24. PubMed ID: 18763567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment.
    Urata M; Uchida E; Nojiri H; Omori T; Obo R; Miyaura N; Ouchiyama N
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2457-65. PubMed ID: 15618615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM.
    Fuchs K; Schreiner A; Lingens F
    J Gen Microbiol; 1991 Aug; 137(8):2033-9. PubMed ID: 1955877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine synthetase and glutamine synthetase-like protein from human brain: purification and comparative characterization.
    Boksha IS; Tereshkina EB; Burbaeva GS
    J Neurochem; 2000 Dec; 75(6):2574-82. PubMed ID: 11080211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on characterization of glutamine synthetase from Streptomyces lincolnensis].
    Jin Z; Yang Y; Jiao R
    Wei Sheng Wu Xue Bao; 1998 Dec; 38(6):441-8. PubMed ID: 12548923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, characterization, and gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2.
    Murakami S; Nakanishi Y; Kodama N; Takenaka S; Shinke R; Aoki K
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):747-52. PubMed ID: 9614705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase.
    Nojiri H; Ashikawa Y; Noguchi H; Nam JW; Urata M; Fujimoto Z; Uchimura H; Terada T; Nakamura S; Shimizu K; Yoshida T; Habe H; Omori T
    J Mol Biol; 2005 Aug; 351(2):355-70. PubMed ID: 16005887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58.
    Zhao Q; Hu HB; Wang W; Huang XQ; Zhang XH
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28188209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.