BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31119370)

  • 1. Carbon catabolite repression: not only for glucose.
    Simpson-Lavy K; Kupiec M
    Curr Genet; 2019 Dec; 65(6):1321-1323. PubMed ID: 31119370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K; Kupiec M
    Sci Rep; 2019 Apr; 9(1):6491. PubMed ID: 31019232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J
    Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid.
    Balderas-Hernández VE; Correia K; Mahadevan R
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):735-751. PubMed ID: 29876685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation.
    Alipourfard I; Bakhtiyari S; Datukishvili N; Haghani K; Di Renzo L; De Miranda RC; Cioccoloni G; Basiratyan Yazdi P; Mikeladze D
    J Biol Regul Homeost Agents; 2018; 32(3):649-654. PubMed ID: 29921394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
    López ML; Redruello B; Valdés E; Moreno F; Heinisch JJ; Rodicio R
    Curr Genet; 2004 Jan; 44(6):305-16. PubMed ID: 14569415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium ions in yeast: setting free the metabolism from glucose catabolite repression.
    Barros de Souza R; Silva RK; Ferreira DS; de Sá Leitão Paiva Junior S; de Barros Pita W; de Morais Junior MA
    Metallomics; 2016 Nov; 8(11):1193-1203. PubMed ID: 27714092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis.
    Peña-Moreno IC; Castro Parente D; da Silva JM; Andrade Mendonça A; Rojas LAV; de Morais Junior MA; de Barros Pita W
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):209-220. PubMed ID: 30539327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.
    Murashchenko L; Abbas C; Dmytruk K; Sibirny A
    Yeast; 2016 Aug; 33(8):463-9. PubMed ID: 26990811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis.
    Mazzoni C; Saliola M; Falcone C
    Mol Microbiol; 1992 Aug; 6(16):2279-86. PubMed ID: 1406268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression.
    Arndt A; Eikmanns BJ
    J Bacteriol; 2007 Oct; 189(20):7408-16. PubMed ID: 17693518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae.
    Grauslund M; Rønnow B
    Can J Microbiol; 2000 Dec; 46(12):1096-100. PubMed ID: 11142398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches.
    Yang P; Jiang S; Lu S; Jiang S; Jiang S; Deng Y; Lu J; Wang H; Zhou Y
    Microb Cell Fact; 2022 Aug; 21(1):160. PubMed ID: 35964044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae.
    Mollapour M; Piper PW
    FEMS Yeast Res; 2006 Dec; 6(8):1274-80. PubMed ID: 17156024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.