BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31119534)

  • 1. Nitrogen and phosphorus removal comparison between periphyton on artificial substrates and plant-periphyton complex in floating treatment wetlands.
    Gao X; Wang Y; Sun B; Li N
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21161-21171. PubMed ID: 31119534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds.
    Wang CY; Sample DJ
    J Environ Manage; 2014 May; 137():23-35. PubMed ID: 24594756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing nitrogen and phosphorus removal potential of five plant species in floating treatment wetlands receiving simulated nursery runoff.
    Spangler JT; Sample DJ; Fox LJ; Albano JP; White SA
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5751-5768. PubMed ID: 30612349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier.
    Zhang L; Zhao J; Cui N; Dai Y; Kong L; Wu J; Cheng S
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7437-43. PubMed ID: 26697862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of a process-based model to assess nutrient removal in floating treatment wetlands.
    Wang Y; Sun B; Gao X; Li N
    Sci Total Environ; 2019 Dec; 694():133633. PubMed ID: 31386953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phosphorus removal in floating treatment wetlands: New insights in non-reactive phosphorus.
    Shen S; Geng Z; Li X; Lu X
    Sci Total Environ; 2022 Apr; 815():152896. PubMed ID: 34998752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies.
    Kumwimba MN; Huang J; Dzakpasu M; Ajibade FO; Li X; Sanganyado E; Guadie A; Şenel E; Muyembe DK
    Chemosphere; 2023 Jul; 330():138703. PubMed ID: 37100253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies.
    Nsenga Kumwimba M; Batool A; Li X
    Sci Total Environ; 2021 Apr; 766():142608. PubMed ID: 33082049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments and applications of floating treatment wetlands for treating different source waters: a review.
    Shen S; Li X; Lu X
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62061-62084. PubMed ID: 34586569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short- and long-term dynamics of nutrient removal in floating treatment wetlands.
    Garcia Chance LM; Van Brunt SC; Majsztrik JC; White SA
    Water Res; 2019 Aug; 159():153-163. PubMed ID: 31091480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing floating treatment wetland and retention pond design through random forest: A meta-analysis of influential variables.
    Tirpak RA; Tondera K; Tharp R; Borne KE; Schwammberger P; Ruppelt J; Winston RJ
    J Environ Manage; 2022 Jun; 312():114909. PubMed ID: 35305357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of floating wetlands for the improvement of degraded urban waters: Findings from three multi-year pilot-scale installations.
    Rome M; Happel A; Dahlenburg C; Nicodemus P; Schott E; Mueller S; Lovell K; Beighley RE
    Sci Total Environ; 2023 Jun; 877():162669. PubMed ID: 36907411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Nutrient Remediation by Monoculture and Mixed Species Plantings within Floating Treatment Wetlands.
    Garcia Chance LM; Majsztrik JC; Bridges WC; Willis SA; Albano JP; White SA
    Environ Sci Technol; 2020 Jul; 54(14):8710-8718. PubMed ID: 32574053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands.
    Shen C; Zhao YQ; Liu RB; Morgan D; Wei T
    Sci Total Environ; 2019 Jul; 673():230-236. PubMed ID: 30991314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA
    Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient Removal by Floating Treatment Wetlands Under Different Spatial Arrangement Modes: a Field Study.
    Qiao Y; Ma C; Xu K
    Environ Manage; 2022 Sep; 70(3):420-430. PubMed ID: 35788419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant removal from low-concentration polluted river water by the bio-rack wetlands.
    Wang J; Zhang L; Lu S; Jin X; Gan S
    J Environ Sci (China); 2012; 24(6):1006-13. PubMed ID: 23505867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.