BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31119969)

  • 21. The performance of the single-walled carbon nanotube covalently modified with polyethylene glycol to delivery of Gemcitabine anticancer drug in the aqueous environment.
    Moradnia H; Raissi H; Shahabi M
    J Biomol Struct Dyn; 2021 Feb; 39(3):881-888. PubMed ID: 31959081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the interaction between anti-cancer drug penicillamine and pristine and functionalized carbon nanotubes for medical applications: density functional theory investigation and a molecular dynamics simulation.
    Shaki H; Raissi H; Mollania F; Hashemzadeh H
    J Biomol Struct Dyn; 2020 Mar; 38(5):1322-1334. PubMed ID: 31002028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytosine-Rich DNA Fragments Covalently Bound to Carbon Nanotube as Factors Triggering Doxorubicin Release at Acidic pH. A Molecular Dynamics Study.
    Wolski P; Nieszporek K; Panczyk T
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of nanotubes as the smart carriers for targeted delivery of mercaptopurine anticancer drug.
    Zaboli M; Raissi H; Zaboli M
    J Biomol Struct Dyn; 2022 Jul; 40(10):4579-4592. PubMed ID: 33336622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boron nitride nanotubes as containers for targeted drug delivery of doxorubicin.
    Nejad MA; Umstätter P; Urbassek HM
    J Mol Model; 2020 Feb; 26(3):54. PubMed ID: 32036483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations.
    Tohidifar L; Hadipour NL
    J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system.
    Maleki R; Afrouzi HH; Hosseini M; Toghraie D; Rostami S
    Comput Methods Programs Biomed; 2020 Feb; 184():105303. PubMed ID: 31901633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study on penetration mechanisms of drug-loaded carbon and boron nitride nanotubes through biological membranes by steered molecular dynamics simulations.
    Ziaei S; Rashtbari B; Azamat J; Erfan-Niya H
    J Biomol Struct Dyn; 2023 Nov; ():1-13. PubMed ID: 37921702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.
    Zhu X; Xie Y; Zhang Y; Huang H; Huang S; Hou L; Zhang H; Li Z; Shi J; Zhang Z
    J Biomater Appl; 2014 Nov; 29(5):769-79. PubMed ID: 25033825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption mechanism and collapse propensities of the full-length, monomeric Aβ(1-42) on the surface of a single-walled carbon nanotube: a molecular dynamics simulation study.
    Jana AK; Sengupta N
    Biophys J; 2012 Apr; 102(8):1889-96. PubMed ID: 22768945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.
    Ji J; Liu M; Meng Y; Liu R; Yan Y; Dong J; Guo Z; Ye C
    Med Sci Monit; 2016 Jul; 22():2363-73. PubMed ID: 27385226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.
    Ünlü A; Meran M; Dinc B; Karatepe N; Bektaş M; Güner FS
    Mol Biol Rep; 2018 Aug; 45(4):523-531. PubMed ID: 29797174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of embedded carbon nanotube on properties of biomembrane.
    Li X; Shi Y; Miao B; Zhao Y
    J Phys Chem B; 2012 May; 116(18):5391-7. PubMed ID: 22515150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the poly(l-histidine) grafted carbon nanotube as a possible smart drug delivery vehicle.
    Haghi A; Raissi H; Hashemzadeh H; Farzad F
    Comput Biol Med; 2022 Apr; 143():105336. PubMed ID: 35219189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation of anticancer drug delivery from carbon nanotube using metal nanowires.
    Abbaspour M; Namayandeh Jorabchi M; Akbarzadeh H; Salemi S; Ebrahimi R
    J Comput Chem; 2019 Sep; 40(25):2179-2190. PubMed ID: 31125147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.
    Mehrjouei E; Akbarzadeh H; Shamkhali AN; Abbaspour M; Salemi S; Abdi P
    Mol Pharm; 2017 Jul; 14(7):2273-2284. PubMed ID: 28595387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery.
    Al-Qattan MN; Deb PK; Tekade RK
    Drug Discov Today; 2018 Feb; 23(2):235-250. PubMed ID: 29031623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations.
    Rungnim C; Rungrotmongkol T; Poo-Arporn RP
    J Mol Graph Model; 2016 Nov; 70():70-76. PubMed ID: 27677150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study.
    Hashemzadeh H; Raissi H
    J Mol Model; 2017 Aug; 23(8):222. PubMed ID: 28702805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.