These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31120348)

  • 1. Analyzing Tumor Heterogeneity by Incorporating Long-Range Mutational Influences and Multiple Sample Data into Heterogeneity Factorial Hidden Markov Model.
    Rahman MS; Haffari G
    J Comput Biol; 2019 Sep; 26(9):985-1002. PubMed ID: 31120348
    [No Abstract]   [Full Text] [Related]  

  • 2. HetFHMM: A Novel Approach to Infer Tumor Heterogeneity Using Factorial Hidden Markov Models.
    Rahman MS; Nicholson AE; Haffari G
    J Comput Biol; 2018 Feb; 25(2):182-193. PubMed ID: 29035575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CLImAT-HET: detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data.
    Yu Z; Li A; Wang M
    BMC Med Genomics; 2017 Mar; 10(1):15. PubMed ID: 28298214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
    Bian J; Zhou X
    Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer.
    Wojtowicz D; Sason I; Huang X; Kim YA; Leiserson MDM; Przytycka TM; Sharan R
    Genome Med; 2019 Jul; 11(1):49. PubMed ID: 31349863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CloneSig can jointly infer intra-tumor heterogeneity and mutational signature activity in bulk tumor sequencing data.
    Abécassis J; Reyal F; Vert JP
    Nat Commun; 2021 Sep; 12(1):5352. PubMed ID: 34504064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation.
    Pongor L; Harami-Papp H; Méhes E; Czirók A; Győrffy B
    Sci Rep; 2017 Aug; 7(1):7358. PubMed ID: 28779157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminating between rate heterogeneity and interspecific recombination in DNA sequence alignments with phylogenetic factorial hidden Markov models.
    Husmeier D
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii166-72. PubMed ID: 16204097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms.
    Cheng JY; Mailund T
    Comput Biol Chem; 2015 Aug; 57():80-92. PubMed ID: 25819138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring clonal evolution of tumors from single nucleotide somatic mutations.
    Jiao W; Vembu S; Deshwar AG; Stein L; Morris Q
    BMC Bioinformatics; 2014 Feb; 15():35. PubMed ID: 24484323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CloneCNA: detecting subclonal somatic copy number alterations in heterogeneous tumor samples from whole-exome sequencing data.
    Yu Z; Li A; Wang M
    BMC Bioinformatics; 2016 Aug; 17():310. PubMed ID: 27538789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data.
    Fan Y; Xi L; Hughes DS; Zhang J; Zhang J; Futreal PA; Wheeler DA; Wang W
    Genome Biol; 2016 Aug; 17(1):178. PubMed ID: 27557938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for inferring hidden markov models from noisy time sequences.
    Kelly D; Dillingham M; Hudson A; Wiesner K
    PLoS One; 2012; 7(1):e29703. PubMed ID: 22247783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conifer: clonal tree inference for tumor heterogeneity with single-cell and bulk sequencing data.
    Baghaarabani L; Goliaei S; Foroughmand-Araabi MH; Shariatpanahi SP; Goliaei B
    BMC Bioinformatics; 2021 Aug; 22(1):416. PubMed ID: 34461827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing tumor trees from single cells.
    Davis A; Navin NE
    Genome Biol; 2016 May; 17(1):113. PubMed ID: 27230879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Genomic Aberrations in Cancer Subclones from Heterogeneous Tumor Samples.
    Xia H; Liu Y; Wang M; Li A
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):679-85. PubMed ID: 26357278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and correct the GC bias of tumor and normal WGS data for SCNA based tumor subclonal population inferring.
    Chu Y; Teng M; Wang Y
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):112. PubMed ID: 29671389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspective on how to approach molecular diagnostics in acute myeloid leukemia and myelodysplastic syndromes in the era of next-generation sequencing.
    Kohlmann A; Bacher U; Schnittger S; Haferlach T
    Leuk Lymphoma; 2014 Aug; 55(8):1725-34. PubMed ID: 24144312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms.
    Au CH; Wa A; Ho DN; Chan TL; Ma ES
    Diagn Pathol; 2016 Jan; 11():11. PubMed ID: 26796102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GBScleanR: robust genotyping error correction using a hidden Markov model with error pattern recognition.
    Furuta T; Yamamoto T; Ashikari M
    Genetics; 2023 May; 224(2):. PubMed ID: 36988327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.