These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31120490)

  • 1. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding.
    Zeng H; Gifford DK
    Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HLA class I binding prediction via convolutional neural networks.
    Vang YS; Xie X
    Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
    Zhang H; Lundegaard C; Nielsen M
    Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model.
    Venkatesh G; Grover A; Srinivasaraghavan G; Rao S
    Bioinformatics; 2020 Jul; 36(Suppl_1):i399-i406. PubMed ID: 32657386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction.
    Chen Z; Min MR; Ning X
    Front Mol Biosci; 2021; 8():634836. PubMed ID: 34079815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico design of MHC class I high binding affinity peptides through motifs activation map.
    Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CNN-PepPred: an open-source tool to create convolutional NN models for the discovery of patterns in peptide sets-application to peptide-MHC class II binding prediction.
    Junet V; Daura X
    Bioinformatics; 2021 Dec; 37(23):4567-4568. PubMed ID: 34601583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepSeqPanII: An Interpretable Recurrent Neural Network Model With Attention Mechanism for Peptide-HLA Class II Binding Prediction.
    Liu Z; Jin J; Cui Y; Xiong Z; Nasiri A; Zhao Y; Hu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2188-2196. PubMed ID: 33886473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order neural networks and kernel methods for peptide-MHC binding prediction.
    Kuksa PP; Min MR; Dugar R; Gerstein M
    Bioinformatics; 2015 Nov; 31(22):3600-7. PubMed ID: 26206306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.