These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31120493)

  • 1. The Role of Developmental Integration and Historical Contingency in the Origin and Evolution of Cypriniform Trophic Novelties.
    Hernandez LP; Cohen KE
    Integr Comp Biol; 2019 Aug; 59(2):473-488. PubMed ID: 31120493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using zebrafish to investigate cypriniform evolutionary novelties: functional development and evolutionary diversification of the kinethmoid.
    Patricia Hernandez L; Bird NC; Staab KL
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):625-41. PubMed ID: 17358013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom Feeding and Beyond: How the Premaxillary Protrusion of Cypriniforms Allowed for a Novel Kind of Suction Feeding.
    Hernandez LP; Staab KL
    Integr Comp Biol; 2015 Jul; 55(1):74-84. PubMed ID: 25976909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative kinematics of cypriniform premaxillary protrusion.
    Staab KL; Ferry LA; Hernandez LP
    Zoology (Jena); 2012 Apr; 115(2):65-77. PubMed ID: 22425599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharyngeal Jaws Converge by Similar Means, Not to Similar Ends, When Minnows (Cypriniformes: Leuciscidae) Adapt to New Dietary Niches.
    Pos KM; Farina SC; Kolmann MA; Gidmark NJ
    Integr Comp Biol; 2019 Aug; 59(2):432-442. PubMed ID: 31161224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio.
    Gidmark NJ; Staab KL; Brainerd EL; Hernandez LP
    J Exp Biol; 2012 Jul; 215(Pt 13):2262-72. PubMed ID: 22675187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex trophic anatomy of silver carp, Hypophthalmichthys molitrix, highlighting a novel type of epibranchial organ.
    Cohen KE; Hernandez LP
    J Morphol; 2018 Nov; 279(11):1615-1628. PubMed ID: 30368877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the cypriniform protrusible jaw complex in Danio rerio: constructional insights for evolution.
    Staab KL; Hernandez LP
    J Morphol; 2010 Jul; 271(7):814-25. PubMed ID: 20235155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupled jaws promote trophic diversity in cichlid fishes.
    Burress ED; Martinez CM; Wainwright PC
    Evolution; 2020 May; 74(5):950-961. PubMed ID: 32246835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cichlid pharyngeal jaw novelty enhances evolutionary integration in the feeding apparatus.
    Roberts-Hugghis AS; Burress ED; Lam B; Wainwright PC
    Evolution; 2023 Sep; 77(9):1917-1929. PubMed ID: 37326103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing evolutionary decoupling of oral and pharyngeal jaws in cichlid fishes.
    Ronco F; Salzburger W
    Evol Lett; 2021 Dec; 5(6):625-635. PubMed ID: 34917401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?
    Alfaro ME; Brock CD; Banbury BL; Wainwright PC
    BMC Evol Biol; 2009 Oct; 9():255. PubMed ID: 19849854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes.
    Burress ED
    J Anim Ecol; 2016 Jan; 85(1):302-13. PubMed ID: 26476003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem's key innovation hypothesis.
    Hulsey CD; García de León FJ; Rodiles-Hernández R
    Evolution; 2006 Oct; 60(10):2096-109. PubMed ID: 17133866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological variation in the Weberian apparatus of Cypriniformes.
    Bird NC; Hernandez LP
    J Morphol; 2007 Sep; 268(9):739-57. PubMed ID: 17591731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled.
    Conith AJ; Albertson RC
    Nat Commun; 2021 Sep; 12(1):5477. PubMed ID: 34531386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building trophic specializations that result in substantial niche partitioning within a young adaptive radiation.
    Hernandez LP; Adriaens D; Martin CH; Wainwright PC; Masschaele B; Dierick M
    J Anat; 2018 Feb; 232(2):173-185. PubMed ID: 29161774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional coupling in the evolution of suction feeding and gill ventilation of sculpins (Perciformes: Cottoidei).
    Farina SC; Knope ML; Corn KA; Summers AP; Bemis WE
    Integr Comp Biol; 2019 Aug; 59(2):394-409. PubMed ID: 31004486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deploy the proboscis!: Functional morphology and kinematics of a novel form of extreme jaw protrusion in the hingemouth, Phractolaemus ansorgii (Gonorynchiformes).
    Evans AJ; Naylor ER; Lujan NK; Kawano SM; Hernandez LP
    J Anat; 2024 Jun; 244(6):929-942. PubMed ID: 38308591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological variation of the palatal organ and chewing pad of catostomidae (teleostei: cypriniformes).
    Doosey MH; Bart HL
    J Morphol; 2011 Sep; 272(9):1092-108. PubMed ID: 21598291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.