BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 31120722)

  • 1. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications.
    Wu JG; Chen JH; Liu KT; Luo SC
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21294-21307. PubMed ID: 31120722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications.
    Lin CH; Luo SC
    Langmuir; 2022 Jun; 38(24):7383-7399. PubMed ID: 35675211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A trade-off between antifouling and the electrochemical stabilities of PEDOTs.
    Zhang YQ; Lin HA; Pan QC; Qian SH; Zhang SY; Zhuang A; Zhang SH; Qiu G; Cieplak M; Sharma PS; Zhang Y; Zhao H; Zhu B
    J Mater Chem B; 2021 Mar; 9(11):2717-2726. PubMed ID: 33683271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective and antifouling electrochemical biosensors for sensitive MicroRNA assaying based on conducting polymer polyaniline functionalized with zwitterionic peptide.
    Wang D; Wang J; Song Z; Hui N
    Anal Bioanal Chem; 2021 Jan; 413(2):543-553. PubMed ID: 33191454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces.
    Goda T; Miyahara Y
    Langmuir; 2019 Feb; 35(5):1126-1133. PubMed ID: 30001621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films.
    Yang R; Goktekin E; Wang M; Gleason KK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1687-702. PubMed ID: 25188220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.
    Robinson KJ; Coffey JW; Muller DA; Young PR; Kendall MA; Thurecht KJ; Grøndahl L; Corrie SR
    Biointerphases; 2015 Dec; 10(4):04A305. PubMed ID: 26446192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives.
    Lee CJ; Wang H; Young M; Li S; Cheng F; Cong H; Cheng G
    Acta Biomater; 2018 Jul; 75():161-170. PubMed ID: 29879552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Interpretation of Hydration Dynamics Enabled the Fabrication of a Zwitterionic Antifouling Surface.
    Choi W; Jin J; Park S; Kim JY; Lee MJ; Sun H; Kwon JS; Lee H; Choi SH; Hong J
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7951-7965. PubMed ID: 31968161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifouling and Antibacterial Surfaces Grafted with Sulfur-Containing Copolymers.
    Xu X; Wang Q; Chang Y; Zhang Y; Peng H; Whittaker AK; Fu C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41400-41411. PubMed ID: 36040859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary Supramolecular Functionalization Enhances Antifouling Surfaces: A Ureidopyrimidinone-Functionalized Phosphorylcholine Polymer.
    Feliciano AJ; Soares E; Bosman AW; van Blitterswijk C; Moroni L; LaPointe VLS; Baker MB
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4619-4631. PubMed ID: 37413691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties.
    Li M; Neoh KG; Xu LQ; Wang R; Kang ET; Lau T; Olszyna DP; Chiong E
    Langmuir; 2012 Nov; 28(47):16408-22. PubMed ID: 23121175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling.
    Dai G; Xie Q; Ai X; Ma C; Zhang G
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41750-41757. PubMed ID: 31603306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems.
    Li D; Wei Q; Wu C; Zhang X; Xue Q; Zheng T; Cao M
    Adv Colloid Interface Sci; 2020 Apr; 278():102141. PubMed ID: 32213350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization.
    Fan YJ; Pham MT; Huang CJ
    Langmuir; 2019 Feb; 35(5):1642-1651. PubMed ID: 30114915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-fragmenting hyperbranched copolymers with hydrolysis-generating zwitterions for antifouling coatings.
    Mei L; Ai X; Ma C; Zhang G
    J Mater Chem B; 2020 Jul; 8(25):5434-5440. PubMed ID: 32530450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes.
    Xu X; Huang X; Chang Y; Yu Y; Zhao J; Isahak N; Teng J; Qiao R; Peng H; Zhao CX; Davis TP; Fu C; Whittaker AK
    Biomacromolecules; 2021 Feb; 22(2):330-339. PubMed ID: 33305948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.