BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31120877)

  • 21. The impact of imitation on vaccination behavior in social contact networks.
    Ndeffo Mbah ML; Liu J; Bauch CT; Tekel YI; Medlock J; Meyers LA; Galvani AP
    PLoS Comput Biol; 2012; 8(4):e1002469. PubMed ID: 22511859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIR epidemics and vaccination on random graphs with clustering.
    Fransson C; Trapman P
    J Math Biol; 2019 Jun; 78(7):2369-2398. PubMed ID: 30972440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effects of Imitation Dynamics on Vaccination Behaviours in SIR-Network Model.
    Chang SL; Piraveenan M; Prokopenko M
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31336761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Canonical modeling of anticipatory vaccination behavior and long term epidemic recurrence.
    Flaig J; Houy N; Michel P
    J Theor Biol; 2018 Jan; 436():26-38. PubMed ID: 28966109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the establishment of herd immunity in the population by means of serological surveys and vaccination coverage.
    Plans-Rubió P
    Hum Vaccin Immunother; 2012 Feb; 8(2):184-8. PubMed ID: 22426372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Progress in assessment of vaccine on herd protection].
    Jin PF; Li JX; Zhu FC
    Zhonghua Liu Xing Bing Xue Za Zhi; 2018 Jun; 39(6):862-866. PubMed ID: 29936762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling collective effectiveness of voluntary vaccination with and without incentives.
    Rat-Aspert O; Fourichon C
    Prev Vet Med; 2010 Mar; 93(4):265-75. PubMed ID: 20022648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vaccination dilemma on an evolving social network.
    Wei Y; Lin Y; Wu B
    J Theor Biol; 2019 Dec; 483():109978. PubMed ID: 31437437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positive network assortativity of influenza vaccination at a high school: implications for outbreak risk and herd immunity.
    Barclay VC; Smieszek T; He J; Cao G; Rainey JJ; Gao H; Uzicanin A; Salathé M
    PLoS One; 2014; 9(2):e87042. PubMed ID: 24505274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hierarchical intervention scheme based on epidemic severity in a community network.
    He R; Luo X; Asamoah JKK; Zhang Y; Li Y; Jin Z; Sun GQ
    J Math Biol; 2023 Jul; 87(2):29. PubMed ID: 37452969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Individual decisions to vaccinate one's child or oneself: A discrete choice experiment rejecting free-riding motives.
    Verelst F; Willem L; Kessels R; Beutels P
    Soc Sci Med; 2018 Jun; 207():106-116. PubMed ID: 29738898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drivers of vaccine decision-making in South Africa: A discrete choice experiment.
    Verelst F; Kessels R; Delva W; Beutels P; Willem L
    Vaccine; 2019 Apr; 37(15):2079-2089. PubMed ID: 30857931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of vaccine failure rate on epidemic dynamics in responsive networks.
    Liang YH; Juang J
    Chaos; 2015 Apr; 25(4):043116. PubMed ID: 25933664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring Voluntary Vaccinating Behaviors using Evolutionary N-person Threshold Games.
    Shi B; Wang W; Qiu H; Chen YW; Peng S
    Sci Rep; 2017 Nov; 7(1):16355. PubMed ID: 29180687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expected utility of voluntary vaccination in the middle of an emergent Bluetongue virus serotype 8 epidemic: a decision analysis parameterized for Dutch circumstances.
    Sok J; Hogeveen H; Elbers AR; Velthuis AG; Oude Lansink AG
    Prev Vet Med; 2014 Aug; 115(3-4):75-87. PubMed ID: 24768508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A measles epidemic threshold in a highly vaccinated population.
    Wallinga J; Heijne JC; Kretzschmar M
    PLoS Med; 2005 Nov; 2(11):e316. PubMed ID: 16218769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local risk perception enhances epidemic control.
    Herrera-Diestra JL; Meyers LA
    PLoS One; 2019; 14(12):e0225576. PubMed ID: 31794551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppression of epidemic spreading process on multiplex networks via active immunization.
    Li Z; Zhu P; Zhao D; Deng Z; Wang Z
    Chaos; 2019 Jul; 29(7):073111. PubMed ID: 31370413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.