These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31120939)

  • 21. A flexible nonparametric approach to find candidate genes associated with disease in microarray experiments.
    Hossain A; Willan AR; Beyene J
    J Bioinform Comput Biol; 2013 Apr; 11(2):1250021. PubMed ID: 23600812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data.
    Yoshida K; Yoshimoto J; Doya K
    BMC Bioinformatics; 2017 Feb; 18(1):108. PubMed ID: 28196464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity analysis of gene ranking methods in phenotype prediction.
    deAndrés-Galiana EJ; Fernández-Martínez JL; Sonis ST
    J Biomed Inform; 2016 Dec; 64():255-264. PubMed ID: 27793724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallelized evolutionary learning for detection of biclusters in gene expression data.
    Huang Q; Tao D; Li X; Liew AW
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):560-70. PubMed ID: 21383419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliable classification of two-class cancer data using evolutionary algorithms.
    Deb K; Raji Reddy A
    Biosystems; 2003 Nov; 72(1-2):111-29. PubMed ID: 14642662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiclass kernel-imbedded Gaussian processes for microarray data analysis.
    Zhao X; Cheung LW
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1041-53. PubMed ID: 20805625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning a peptide-protein binding affinity predictor with kernel ridge regression.
    Giguère S; Marchand M; Laviolette F; Drouin A; Corbeil J
    BMC Bioinformatics; 2013 Mar; 14():82. PubMed ID: 23497081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A generalized kernel machine approach to identify higher-order composite effects in multi-view datasets, with application to adolescent brain development and osteoporosis.
    Alam MA; Qiu C; Shen H; Wang YP; Deng HW
    J Biomed Inform; 2021 Aug; 120():103854. PubMed ID: 34237438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fast gene selection method for multi-cancer classification using multiple support vector data description.
    Cao J; Zhang L; Wang B; Li F; Yang J
    J Biomed Inform; 2015 Feb; 53():381-9. PubMed ID: 25549938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regularized Least Squares Cancer classifiers from DNA microarray data.
    Ancona N; Maglietta R; D'Addabbo A; Liuni S; Pesole G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S2. PubMed ID: 16351746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ranking Support Vector Machine with Kernel Approximation.
    Chen K; Li R; Dou Y; Liang Z; Lv Q
    Comput Intell Neurosci; 2017; 2017():4629534. PubMed ID: 28293256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MiRTif: a support vector machine-based microRNA target interaction filter.
    Yang Y; Wang YP; Li KB
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S4. PubMed ID: 19091027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
    Li X; Bai Y; Peng Y; Du S; Ying S
    Int J Neural Syst; 2018 Mar; 28(2):1750040. PubMed ID: 28982281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining gene expression profiles: an integrated implementation of kernel principal component analysis and singular value decomposition.
    Reverter F; Vegas E; Sánchez P
    Genomics Proteomics Bioinformatics; 2010 Sep; 8(3):200-10. PubMed ID: 20970748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.
    Xie Y; Pan W; Khodursky AB
    Bioinformatics; 2005 Dec; 21(23):4280-8. PubMed ID: 16188930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems.
    Tsai YS; Lin CT; Tseng GC; Chung IF; Pal NR
    BMC Bioinformatics; 2008 Oct; 9():425. PubMed ID: 18842155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.