These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 31121090)
1. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
2. Nb-Ti-Zr alloys for orthopedic implants. Zhang T; Ou P; Ruan J; Yang H J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn. Khrunyk YY; Ehnert S; Grib SV; Illarionov AG; Stepanov SI; Popov AA; Ryzhkov MA; Belikov SV; Xu Z; Rupp F; Nüssler AK Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638960 [TBL] [Abstract][Full Text] [Related]
4. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys. Banerjee R; Nag S; Stechschulte J; Fraser HL Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114 [TBL] [Abstract][Full Text] [Related]
5. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications. Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338 [TBL] [Abstract][Full Text] [Related]
6. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. Ito A; Okazaki Y; Tateishi T; Ito Y J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029 [TBL] [Abstract][Full Text] [Related]
7. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study. Wang X; Meng X; Chu S; Xiang X; Liu Z; Zhao J; Zhou Y J Mater Sci Mater Med; 2016 Sep; 27(9):139. PubMed ID: 27534399 [TBL] [Abstract][Full Text] [Related]
8. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992 [TBL] [Abstract][Full Text] [Related]
9. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
10. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications. Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389 [TBL] [Abstract][Full Text] [Related]
11. Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications. Acharya S; Panicker AG; Gopal V; Dabas SS; Manivasagam G; Suwas S; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110729. PubMed ID: 32204039 [TBL] [Abstract][Full Text] [Related]
12. Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6Nb-13.6Zr-0.5V. Mohammed MT; Khan ZA; Manivasagam G; Siddiquee AN Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):223-35. PubMed ID: 26491324 [TBL] [Abstract][Full Text] [Related]
13. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti-28Nb-35.4Zr alloy. Ozan S; Lin J; Li Y; Zhang Y; Munir K; Jiang H; Wen C J Mech Behav Biomed Mater; 2018 Feb; 78():224-234. PubMed ID: 29175491 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Hieda J; Todaka Y; Akahori T; Miyazaki T J Mech Behav Biomed Mater; 2012 Jun; 10():235-45. PubMed ID: 22520435 [TBL] [Abstract][Full Text] [Related]
15. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Niinomi M Biomaterials; 2003 Jul; 24(16):2673-83. PubMed ID: 12711513 [TBL] [Abstract][Full Text] [Related]
16. Development of binary and ternary titanium alloys for dental implants. Cordeiro JM; Beline T; Ribeiro ALR; Rangel EC; da Cruz NC; Landers R; Faverani LP; Vaz LG; Fais LMG; Vicente FB; Grandini CR; Mathew MT; Sukotjo C; Barão VAR Dent Mater; 2017 Nov; 33(11):1244-1257. PubMed ID: 28778495 [TBL] [Abstract][Full Text] [Related]
17. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of alloys of the Ti-15Mo-Nb system for biomedical applications. Martins Júnior JRS; Matos AA; Oliveira RC; Buzalaf MAR; Costa I; Rocha LA; Grandini CR J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):639-648. PubMed ID: 28276196 [TBL] [Abstract][Full Text] [Related]
19. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy. Raducanu D; Vasilescu E; Cojocaru VD; Cinca I; Drob P; Vasilescu C; Drob SI J Mech Behav Biomed Mater; 2011 Oct; 4(7):1421-30. PubMed ID: 21783152 [TBL] [Abstract][Full Text] [Related]
20. Corrosion behavior of a low modulus beta-Ti-45%Nb alloy for use in medical implants. Godley R; Starosvetsky D; Gotman I J Mater Sci Mater Med; 2006 Jan; 17(1):63-7. PubMed ID: 16389473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]