These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 31121116)

  • 1. Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species.
    Stein-O'Brien GL; Clark BS; Sherman T; Zibetti C; Hu Q; Sealfon R; Liu S; Qian J; Colantuoni C; Blackshaw S; Goff LA; Fertig EJ
    Cell Syst; 2019 May; 8(5):395-411.e8. PubMed ID: 31121116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PieParty: visualizing cells from scRNA-seq data as pie charts.
    Kurtenbach S; Dollar JJ; Cruz AM; Durante MA; Decatur CL; Harbour JW
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33674364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration and transfer learning of single-cell transcriptomes via cFIT.
    Peng M; Li Y; Wamsley B; Wei Y; Roeder K
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33658382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data.
    Lütge A; Zyprych-Walczak J; Brykczynska Kunzmann U; Crowell HL; Calini D; Malhotra D; Soneson C; Robinson MD
    Life Sci Alliance; 2021 Jun; 4(6):. PubMed ID: 33758076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Single-Cell RNA Sequencing in the Heart.
    Yamada S; Nomura S
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis.
    Lin L; Zhang Y; Qian W; Liu Y; Zhang Y; Lin F; Liu C; Lu G; Sun D; Guo X; Song Y; Song J; Yang C; Li J
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35086932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques.
    Heiser CN; Lau KS
    Cell Rep; 2020 May; 31(5):107576. PubMed ID: 32375029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.