These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 31121432)
1. Small-caliber vascular grafts based on a piezoelectric nanocomposite elastomer: Mechanical properties and biocompatibility. Cafarelli A; Losi P; Salgarella AR; Barsotti MC; Di Cioccio IB; Foffa I; Vannozzi L; Pingue P; Soldani G; Ricotti L J Mech Behav Biomed Mater; 2019 Sep; 97():138-148. PubMed ID: 31121432 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
3. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S; Yekta H; Ahmadi S; Alamara K Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809 [TBL] [Abstract][Full Text] [Related]
4. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts. Bai Y; Dai X; Yin Y; Wang J; Sun X; Liang W; Li Y; Deng X; Zhang X Int J Nanomedicine; 2019; 14():3015-3026. PubMed ID: 31118619 [No Abstract] [Full Text] [Related]
6. Functionalized BaTiO Shuai C; Liu G; Yang Y; Yang W; He C; Wang G; Liu Z; Qi F; Peng S Colloids Surf B Biointerfaces; 2020 Jan; 185():110587. PubMed ID: 31648118 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Piezoelectric BaTiO Strangis G; Labardi M; Gallone G; Milazzo M; Capaccioli S; Forli F; Cinelli P; Berrettini S; Seggiani M; Danti S; Parchi P Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391679 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Nanocomposites with High Elasticity and Strength for the Load-Bearing Layer of Small-Diameter Vascular Grafts. Zizhou R; Khoshmanesh K; Wang X; Houshyar S ACS Appl Mater Interfaces; 2023 Jul; 15(29):35411-35421. PubMed ID: 37436140 [TBL] [Abstract][Full Text] [Related]
10. [Assessment of the mechanical properties and biocompatibility of a new electrospun polyurethane vascular prosthesis]. He W; Hu ZJ; Xu AW; Yin HH; Wang JS; Ye JL; Wang SM Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2006-11. PubMed ID: 22200701 [TBL] [Abstract][Full Text] [Related]
11. Development of a gelatin-based polyurethane vascular graft by spray, phase-inversion technology. Losi P; Mancuso L; Al Kayal T; Celi S; Briganti E; Gualerzi A; Volpi S; Cao G; Soldani G Biomed Mater; 2015 Aug; 10(4):045014. PubMed ID: 26238213 [TBL] [Abstract][Full Text] [Related]
12. Bimodal Nanocomposite Platform with Antibiofilm and Self-Powering Functionalities for Biomedical Applications. Dhall A; Islam S; Park M; Zhang Y; Kim A; Hwang G ACS Appl Mater Interfaces; 2021 Sep; 13(34):40379-40391. PubMed ID: 34406755 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Tang Y; Wu C; Wu Z; Hu L; Zhang W; Zhao K Sci Rep; 2017 Feb; 7():43360. PubMed ID: 28240268 [TBL] [Abstract][Full Text] [Related]
14. In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts. Asadpour S; Ai J; Davoudi P; Ghorbani M; Jalali Monfared M; Ghanbari H Biomed Mater; 2018 Mar; 13(3):035007. PubMed ID: 29345244 [TBL] [Abstract][Full Text] [Related]
15. Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation. Ciofani G; Ricotti L; Mattoli V Biomed Microdevices; 2011 Apr; 13(2):255-66. PubMed ID: 20981490 [TBL] [Abstract][Full Text] [Related]
16. Development of nanocomposite scaffolds based on TiO Abd-Khorsand S; Saber-Samandari S; Saber-Samandari S Int J Biol Macromol; 2017 Aug; 101():51-58. PubMed ID: 28315764 [TBL] [Abstract][Full Text] [Related]
17. Piezoelectric nanoparticle-polymer composite foams. McCall WR; Kim K; Heath C; La Pierre G; Sirbuly DJ ACS Appl Mater Interfaces; 2014 Nov; 6(22):19504-9. PubMed ID: 25353687 [TBL] [Abstract][Full Text] [Related]
18. Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties. Ahmed M; Ghanbari H; Cousins BG; Hamilton G; Seifalian AM Acta Biomater; 2011 Nov; 7(11):3857-67. PubMed ID: 21763798 [TBL] [Abstract][Full Text] [Related]
19. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. Mi HY; Jing X; Yu E; Wang X; Li Q; Turng LS J Mech Behav Biomed Mater; 2018 Feb; 78():433-441. PubMed ID: 29227904 [TBL] [Abstract][Full Text] [Related]