These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31121444)
41. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Tahmasebi A; Kassim MA; Yu J; Bhattacharya S Bioresour Technol; 2013 Dec; 150():15-27. PubMed ID: 24140946 [TBL] [Abstract][Full Text] [Related]
42. Co-combustion of sewage sludge and coffee grounds under increased O Chen J; Xie C; Liu J; He Y; Xie W; Zhang X; Chang K; Kuo J; Sun J; Zheng L; Sun S; Buyukada M; Evrendilek F Bioresour Technol; 2018 Feb; 250():230-238. PubMed ID: 29174900 [TBL] [Abstract][Full Text] [Related]
43. Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization. Teng SY; Loy ACM; Leong WD; How BS; Chin BLF; Máša V Bioresour Technol; 2019 Nov; 292():121971. PubMed ID: 31445240 [TBL] [Abstract][Full Text] [Related]
44. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants. Park SW; Jang CH Waste Manag; 2011 Mar; 31(3):523-9. PubMed ID: 21051215 [TBL] [Abstract][Full Text] [Related]
45. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal. Onenc S; Retschitzegger S; Evic N; Kienzl N; Yanik J Waste Manag; 2018 Jan; 71():192-199. PubMed ID: 29097128 [TBL] [Abstract][Full Text] [Related]
46. Improved ANN-Based Approach Using Relative Impact for the Prediction of Thermal Coal Elemental Composition Using Proximate Analysis. Jo J; Lee DG; Kim J; Lee BH; Jeon CH ACS Omega; 2022 Aug; 7(34):29734-29746. PubMed ID: 36061718 [TBL] [Abstract][Full Text] [Related]
47. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Idris SS; Rahman NA; Ismail K Bioresour Technol; 2012 Nov; 123():581-91. PubMed ID: 22944493 [TBL] [Abstract][Full Text] [Related]
48. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Kiranyaz S; Ince T; Yildirim A; Gabbouj M Neural Netw; 2009 Dec; 22(10):1448-62. PubMed ID: 19556105 [TBL] [Abstract][Full Text] [Related]
49. Mechanical durability and combustion characteristics of pellets from biomass blends. Gil MV; Oulego P; Casal MD; Pevida C; Pis JJ; Rubiera F Bioresour Technol; 2010 Nov; 101(22):8859-67. PubMed ID: 20605093 [TBL] [Abstract][Full Text] [Related]
50. Shea meal and cotton stalk as potential fuels for co-combustion with coal. Munir S; Nimmo W; Gibbs BM Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598 [TBL] [Abstract][Full Text] [Related]
51. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. López-González D; Fernandez-Lopez M; Valverde JL; Sanchez-Silva L Bioresour Technol; 2013 Sep; 143():562-74. PubMed ID: 23835261 [TBL] [Abstract][Full Text] [Related]
52. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Wu Z; Wang S; Zhao J; Chen L; Meng H Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297 [TBL] [Abstract][Full Text] [Related]
53. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Li XG; Lv Y; Ma BG; Jian SW; Tan HB Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028 [TBL] [Abstract][Full Text] [Related]
54. Combustion Characterization and Kinetic Analysis of Mixed Sludge and Lignite Combustion. Sun Y; Sun H; Yang T; Zhu Y; Li R ACS Omega; 2024 Feb; 9(6):6912-6923. PubMed ID: 38371850 [TBL] [Abstract][Full Text] [Related]
55. Co-firing of coal and manure biomass: a TG-MS approach. Otero M; Sánchez ME; Gómez X Bioresour Technol; 2011 Sep; 102(17):8304-9. PubMed ID: 21737261 [TBL] [Abstract][Full Text] [Related]
56. Kinetics of co-pyrolysis of sawdust, coal and tar. Montiano MG; Díaz-Faes E; Barriocanal C Bioresour Technol; 2016 Apr; 205():222-9. PubMed ID: 26829530 [TBL] [Abstract][Full Text] [Related]
57. Prediction Model of Spontaneous Combustion of Lignite in Zhalainuoer Mining Area. Li Y; Jiang M; Jing Z ACS Omega; 2024 Jul; 9(29):31765-31775. PubMed ID: 39072113 [TBL] [Abstract][Full Text] [Related]
58. [Predicting low NOx combustion property of a coal-fired boiler]. Zhou H; Mao J; Chi Z; Jiang X; Wang Z; Cen K Huan Jing Ke Xue; 2002 Mar; 23(2):18-22. PubMed ID: 12048812 [TBL] [Abstract][Full Text] [Related]
59. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal. Zhou C; Liu G; Wang X; Qi C; Hu Y Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608 [TBL] [Abstract][Full Text] [Related]
60. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal. Ma Q; Han L; Huang G Bioresour Technol; 2017 Jun; 234():53-60. PubMed ID: 28319773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]